Bài giảng Toán rời rạc - Phạm Thế Bảo

pdf 99 trang haiha333 6060
Bạn đang xem 20 trang mẫu của tài liệu "Bài giảng Toán rời rạc - Phạm Thế Bảo", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfbai_giang_toan_roi_rac_pham_the_bao.pdf

Nội dung text: Bài giảng Toán rời rạc - Phạm Thế Bảo

  1. LOGO TOÁN RỜI RẠC Phạm Thế Bảo email: ptbao@hcmus.edu.vn www.math.hcmus.edu.vn/~ptbao/TRR/
  2. Nội dung Nội dung: gồm 5 phần - Cơ sở logic - Phép đếm - Quan hệ - Hàm Bool - Đồ thị 2
  3. Tài liệu tham khảo Tài liệu tham khảo 1. ThS. Nguyễn Duy Nhất, ThS. Nguyễn Văn Phong, PGS.TS Đinh Ngọc Thanh, Toán rời rạc. 2. TS. Trần Ngọc Hội, Toán rời rạc. 3. GS.TS Nguyễn Hữu Anh, Toán rời rạc, Nhà xuất bản giáo dục. 4. Rosen, Discrete Mathematics and Its Applications, 6th edition, 2007. 3
  4. Kiểm tra Kiểm tra Kiểm tra giữa kỳ: 30% Kiểm tra cuối kỳ: 70% Điểm thưởng: 5-10% 4
  5. Cơ sở Logic Chương I: Cơ sở logic - Mệnh đề - Dạng mệnh đề - Qui tắc suy diễn - Vị từ, lượng từ - Tập hợp - Ánh xạ - Qui nạp toán học 5
  6. Cơ sở Logic I. Mệnh đề 1. Định nghĩa: Mệnh đề là một khẳng định có giá trị chân lý xác định, đúng hoặc sai. Câu hỏi, câu cảm thán, mệnh lệnh không là mệnh đề. Ví dụ: - mặt trời quay quanh trái đất - 1+1 =2 - Hôm nay trời đẹp quá ! (ko là mệnh đề) - Học bài đi ! (ko là mệnh đề) - 3 là số chẵn phải không? (ko là mệnh đề) 6
  7. Cơ sở Logic I. Mệnh đề Ký hiệu: người ta dùng các ký hiệu P, Q, R để chỉ mệnh đề. Chân trị của mệnh đề: Một mệnh đề chỉ có thể đúng hoặc sai, không thể đồng thời vừa đúng vừa sai. Khi mệnh đề P đúng ta nói P có chân trị đúng, ngược lại ta nói P có chân trị sai. Chân trị đúng và chân trị sai sẽ được ký hiệu lần lượt là 1 (hay Đ,T) và 0 (hay S,F) 7
  8. Cơ sở Logic I. Mệnh đề Kiểm tra các khẳng định sau có phải là mệnh đề không? - Paris là thành phố của Mỹ. - n là số tự nhiên. - con nhà ai mà xinh thế! - 3 là số nguyên tố. - Toán rời rạc là môn bắt buộc của ngành Tin học. - Bạn có khỏe không? - x2 +1 luôn dương. 8
  9. Cơ sở Logic I. Mệnh đề 2. Phân loại: gồm 2 loại a. Mệnh đề phức hợp: là mệnh đề được xây dựng từ các mệnh đề khác nhờ liên kết bằng các liên từ (và, hay, khi và chỉ khi, ) hoặc trạng từ “không”. b. Mệnh đề sơ cấp (nguyên thủy): Là mệnh đề không thể xây dựng từ các mệnh đề khác thông qua liên từ hoặc trạng từ “không”. Ví dụ: - 2 không là số nguyên tố - 2 là số nguyên tố (sơ cấp) - Nếu 3>4 thì trời mưa - An đang xem phim hay An đang học bài - Hôm nay trời đẹp và 1 +1 =3 9
  10. Cơ sở Logic I. Mệnh đề 3. Các phép toán: có 5 phép toán a. Phép phủ định: phủ định của mệnh đề P được ký hiệu là ¬P hay (đọc là “không” P hay “phủ định của” P). Bảng chân trị : Ví dụ : - 2 là số nguyên tố Phủ định: 2 không là số nguyên tố - 1 >2 Phủ định : 1≤ 2 10
  11. Cơ sở Logic I. Mệnh đề b. Phép nối liền (hội): của hai mệnh đề P, Q được kí hiệu bởi P ∧ Q (đọc là “P và Q”), là mệnh đề được định bởi : P ∧ Q đúng khi và chỉ khi P và Q đồng thời đúng. Bảng chân trị Ví dụ: - 3>4 và Trần Hưng Đạo là vị tướng - 2 là số nguyên tố và là số chẵn - An đang hát và uống nước 11
  12. Cơ sở Logic I. Mệnh đề c. Phép nối rời (tuyển): của hai mệnh đề P, Q được kí hiệu bởi P ∨ Q (đọc là “P hay Q”), là mệnh đề được định bởi : P ∨ Q sai khi và chỉ khi P và Q đồng thời sai. Bảng chân trị Ví dụ: - π >4 hay π >5 - 2 là số nguyên tố hay là số chẵn 12
  13. Cơ sở Logic I. Mệnh đề Ví dụ - “Hôm nay, An giúp mẹ lau nhà và rửa chén” - “Hôm nay, cô ấy đẹp và thông minh ” - “Ba đang đọc báo hay xem phim” 13
  14. Cơ sở Logic I. Mệnh đề d. Phép kéo theo: Mệnh đề P kéo theo Q của hai mệnh đề P và Q, kí hiệu bởi P → Q (đọc là “P kéo theo Q” hay “Nếu P thì Q” hay “P là điều kiện đủ của Q” hay “Q là điều kiện cần của P”) là mệnh đề được định bởi: P → Q sai khi và chỉ khi P đúng mà Q sai. Bảng chân trị 14
  15. Cơ sở Logic I. Mệnh đề Ví dụ: - Nếu 1 = 2 thì Lenin là người Việt Nam - Nếu trái đất quay quanh mặt trời thì 1 +3 =5 - π >4 kéo theo 5>6 - π < 4 thì trời mưa - Nếu 2+1=0 thì tôi là chủ tịch nước 15
  16. Cơ sở Logic I. Mệnh đề e. Phép kéo theo hai chiều: Mệnh đề P kéo theo Q và ngược lại của hai mệnh đề P và Q, ký hiệu bởi P ↔ Q (đọc là “P nếu và chỉ nếu Q” hay “P khi và chỉ khi Q” hay “P là điều kiện cần và đủ của Q”), là mệnh đề xác định bởi: P ↔ Q đúng khi và chỉ khi P và Q có cùng chân trị Bảng chân trị 16
  17. Cơ sở Logic I. Mệnh đề Ví dụ: - 2=4 khi và chỉ khi 2+1=0 - 6 chia hết cho 3 khi và chi khi 6 chia hết cho 2 - London là thành phố nước Anh nếu và chỉ nếu thành phố HCM là thủ đô của VN - π >4 là điều kiện cần và đủ của 5 >6 17
  18. Cơ sở Logic II. Dạng mệnh đề 1. Định nghĩa: là một biểu thức được cấu tạo từ: - Các mệnh đề (các hằng mệnh đề) - Các biến mệnh đề p, q, r, , tức là các biến lấy giá trị là các mệnh đề nào đó - Các phép toán ¬, ∧, ∨, →, ↔ và dấu đóng mở ngoặc (). Ví dụ: E(p,q) = ¬(¬p ∧q) F(p,q,r) = (p → q) ∧ ¬(q ∧r) 18
  19. Cơ sở Logic II. Dạng mệnh đề Bảng chân trị của dạng mệnh đề E(p,q,r): là bảng ghi tất cả các trường hợp chân trị có thể xảy ra đối với dạng mệnh đề E theo chân trị của các biến mệnh đề p, q, r. Nếu có n biến, bảng này sẽ có 2n dòng, chưa kể dòng tiêu đề. Ví dụ: E(p,q,r) =(p ∨q) →r . Ta có bảng chân trị sau 19
  20. Cơ sở Logic II. Dạng mệnh đề Mệnh đề E(p,q,r) =(p ∨q) →r theo 3 biến p,q,r có bảng chân trị sau p q r p∨q (p ∨q) →r 0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 1 1 1 1 1 0 0 1 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 20
  21. Cơ sở Logic II. Dạng mệnh đề 21
  22. Cơ sở Logic II. Dạng mệnh đề Bài tập: Lập bảng chân trị của những dạng mệnh đề sau E(p,q) = ¬(p ∧q) ∧p F(p,q,r) = p ∧(q ∨r) ↔ ¬q 22
  23. Cơ sở Logic II. Dạng mệnh đề 2. Tương đương logic: Hai dạng mệnh đề E và F được gọi là tương đương logic nếu chúng có cùng bảng chân trị (hay mệnh đề A↔B là hằng đúng). Ký hiệu E ⇔ F (hay E ≡ F). Ví dụ • ¬(p ∧ q) ⇔ ¬p ∨ ¬ q Định lý: Hai dạng mệnh đề E và F tương đương với nhau khi và chỉ khi E↔F là hằng đúng. 23
  24. Cơ sở Logic II. Dạng mệnh đề Hệ quả logic: F được gọi là hệ quả logic của E nếu E→F là hằng đúng. Ký hiệu E ⇒ F Ví dụ: ¬(p ∨ q) ⇒ ¬ p Trong phép tính mệnh đề người ta không phân biệt những mệnh đề tương đương logic với nhau. Do đó đối với những dạng mệnh đề có công thức phức tạp, ta thường biến đổi để nó tương đương với những mệnh đề đơn giản hơn. Để thực hiện các phép biến đổi ta sử dụng qui tắc thay thế và quy luật logic. 24
  25. Cơ sở Logic II. Dạng mệnh đề Qui tắc thay thế: Trong dạng mệnh đề E, nếu ta thay thế biểu thức con F bởi một dạng mệnh đề tương đương logic thì dạng mệnh đề thu được vẫn còn tương đương logic với E. Ví dụ. ¬(p ∧ q) ∨ r⇔ (¬p ∨ ¬ q) ∨ r 25
  26. Cơ sở Logic II. Dạng mệnh đề Các luật logic 1. Phủ định của phủ định ¬ ¬ p ⇔ p 2. Luật De Morgan ¬ (p ∧ q) ⇔ ¬ p ∨ ¬ q ¬ (p ∨ q) ⇔ ¬ p ∧ ¬ q 3. Luật giao hoán p ∨ q ⇔ q ∨ p p ∧ q ⇔ q ∧ p 4. Luật kết hợp (p ∨ q) ∨ r ⇔ p ∨ (q ∨ r) (p ∧ q) ∧ r p ∧ (q ∧ r) 26
  27. Cơ sở Logic II. Dạng mệnh đề 5. Luật phân phối (bố) p ∨ (q ∧ r) ⇔ (p ∨ q) ∧ (p ∨ r) p ∧ (q ∨ r) ⇔ (p ∧ q) ∨ (p ∧ r) 6. Luật lũy đẳng p ∨ p ⇔ p p ∧ p ⇔ p 7. Luật trung hòa p ∨ 0 ⇔ p p ∧ 1 ⇔ p 27
  28. Cơ sở Logic II. Dạng mệnh đề 8. Luật về phần tử bù p ∧ ¬ p ⇔ 0 p ∨ ¬ p ⇔ 1 9. Luật thống trị p ∧ 0 ⇔ 0 p ∨ 1 ⇔ 1 10. Luật hấp thụ p ∨ (p ∧ q) ⇔ p p ∧ (p ∨ q) ⇔ p 28
  29. Cơ sở Logic II. Dạng mệnh đề 11. Luật về phép kéo theo: p → q ⇔ ¬p ∨ q ⇔ ¬q → ¬ p Ví dụ: Nếu trời mưa thì đường trơn ⇔ nếu đường không trơn thì trời không mưa Bài tập: Cho p, q, r là các biến mệnh đề. Chứng minh rằng: (¬p → r) ∧ (q→ r) ⇔ (p → q) → r 29
  30. Cơ sở Logic II. Dạng mệnh đề (¬p → r) ∧ (q → r) ⇔ ( p ∨ r ) ∧ (¬ q ∨ r) ⇔ ( p∧ ¬ q ) ∨ r ⇔ ¬( ¬p ∨ q ) ∨ r ⇔ ¬( p → q ) ∨ r ⇔ ( p → q ) → r 30
  31. Cơ sở Logic III. qui tắc suy diễn Trong các chứng minh toán học, xuất phát từ một số khẳng định đúng p, q, r (tiền đề), ta áp dụng các qui tắc suy diễn để suy ra chân lí của một mệnh đề h mà ta gọi là kết luận. Nói cách khác, dùng các qui tắc suy diễn để chứng minh: (p∧q∧r∧ ) có hệ quả logic là h Ta thường mô hình hóa phép suy luận đó dưới dạng: p q r ∴h 31
  32. Cơ sở Logic III. Qui tắc suy diễn Các qui tắc suy diễn 1. Qui tắc khẳng định (Modus Ponens) Qui tắc này được thể hiện bằng hằng đúng: Hoặc dưới dạng sơ đồ 32
  33. Cơ sở Logic III. Qui tắc suy diễn • Nếu An học chăm thì An học tốt. • Mà An học chăm Suy ra An học tốt. • Trời mưa thì đường ướt. • Mà chiều nay trời mưa. Suy ra Chiều nay đường ướt. 33
  34. Cơ sở Logic III. Qui tắc suy diễn 2. Quy tắc phủ định Qui tắc này được thể hiện bằng hằng đúng: Hoặc dưới dạng sơ đồ 34
  35. Cơ sở Logic III. Qui tắc suy diễn Nếu An đi học đầy đủ thì An đậu toán rời rạc. An không đậu toán rời rạc. Suy ra: An không đi học đầy đủ 35
  36. Cơ sở Logic III. Qui tắc suy diễn 3. Qui tắc tam đoạn luận Qui tắc này được thể hiện bằng hằng đúng: Hoặc dưới dạng sơ đồ 36
  37. Cơ sở Logic III. Qui tắc suy diễn • Nếu trời mưa thì đường ướt. • Nếu đường ướt thì đường trơn Suy ra nếu trời mưa thì đường trơn. • Một con ngựa rẻ là một con ngựa hiếm • Cái gì hiếm thì đắt Suy ra một con ngựa rẻ thì đắt (☺) 37
  38. Cơ sở Logic III. Qui tắc suy diễn 4. Qui tắc tam đoạn luận rời Qui tắc này được thể hiện bằng hằng đúng: Hoặc dưới dạng sơ đồ Ý nghĩa của qui tắc: nếu một trong hai trường hợp có thể xảy ra, chúng ta biết có một trường hợp không xảy ra thì chắc chắn trường hợp còn lại sẽ xảy ra. 38
  39. Cơ sở Logic III. Qui tắc suy diễn Chủ nhật, An thường lên thư viện hoặc về quê Chủ nhật này, An không về quê Suy ra: Chủ nhật này, An lên thư viện 39
  40. Cơ sở Logic III. Qui tắc suy diễn 5. Quy tắc nối liền Qui tắc này được thể hiện bằng hằng đúng: Hoặc dưới dạng sơ đồ 40
  41. Cơ sở Logic III. Qui tắc suy diễn Hôm nay An học bài. Hôm nay An phụ mẹ nấu ăn. Suy ra: Hôm nay An học bài và phụ mẹ nấu ăn. 41
  42. Cơ sở Logic III. Qui tắc suy diễn 6. Quy tắc đơn giản Qui tắc này được thể hiện bằng hằng đúng: Hoặc dưới dạng sơ đồ 42
  43. Cơ sở Logic III. Qui tắc suy diễn Hôm nay An đi học Toán rời rạc và học Anh văn. Suy ra: Hôm nay An học Toán rời rạc. 43
  44. Cơ sở Logic III. Qui tắc suy diễn 7. Qui tắc mâu thuẫn (chứng minh bằng phản chứng) Ta có tương đương logic Để chứng minh vế trái là một hằng đúng ta chứng minh nếu thêm phủ định của h vào các tiền đề thì được một mâu thuẫn. Ví dụ. Cho a, b, c là 3 đường thẳng phân biệt và a//c và b//c chứng minh a//b. 44
  45. Cơ sở Logic III. Qui tắc suy diễn Dạng sơ đồ ⇔ 45
  46. Cơ sở Logic III. Qui tắc suy diễn Hãy chứng minh: Cm bằng phản chứng. 46
  47. Cơ sở Logic III. Qui tắc suy diễn 8. Qui tắc chứng minh theo trường hợp Dựa trên hằng đúng: Ý nghĩa: nếu p suy ra r và q suy ra r thì p hay q cũng có thể suy ra r. • Chứng minh rằng: 47
  48. Cơ sở Logic III. Qui tắc suy diễn 9. Phản ví dụ Để chứng minh một phép suy luận là sai hay không là một hằng đúng. Ta chỉ cần chỉ ra một phản ví dụ. 48
  49. Cơ sở Logic Suy luận sau có đúng ko? Ông Minh nói rằng nếu không p: ông Minh được tăng được tăng lương thì ông ta lương. sẽ nghỉ việc. Mặt khác, nếu q: ông Minh nghỉ việc. ông ấy nghỉ việc và vợ ông r: vợ ông Minh mất việc. ấy bị mất việc thì phải bán xe. Biết rằng nếu vợ ông s: gia đình phải bán xe. Minh hay đi làm trễ thì trước t: vợ ông hay đi làm trể. sau gì cũng sẽ bị mất việc và cuối cùng ông Minh đã s=0 được tăng lương. t=1 Suy ra nếu ông Minh không p=1 q=0 bán xe thì vợ ông ta đã r=1 không đi làm trễ 49
  50. Cơ sở Logic III. Qui tắc suy diễn Chứng minh suy luận sau: 50
  51. Cơ sở Logic III. Qui tắc suy diễn Theo luật logic, ta có 51
  52. Cơ sở Logic III. Qui tắc suy diễn 52
  53. Cơ sở Logic III. Qui Tắc Suy Diễn 53
  54. Cơ sở Logic III. Qui Tắc Suy Diễn 54
  55. Cơ sở Logic III. Qui Tắc Suy Diễn 55
  56. Cơ sở Logic à 56
  57. Cơ sở Logic IV. Logic vị từ Tập hợp: Là một bộ sưu tập gồm các vật. Mỗi vật được gọi là một phần tử của tập hợp. Kí hiệu: A, B , X, Nếu x là phần tử của tập hợp A, ta kí hiệu x ∈ A Ví dụ: - N ={0,1,2, } là tập hợp các số tự nhiên. - Z = {0,1,-1,2,-2, } tập hợp các số nguyên. - Q = {m/n | m,n ∈ Z, n≠0 } tập hợp các số hữu tỉ. - R: tập hợp các số thực. - C: Tập hợp các số phức. 57
  58. Cơ sở Logic IV. Logic vị từ 1. Định nghĩa Vị từ là một khẳng định p(x,y, ), trong đó x,y là các biến thuộc tập hợp A, B, Cho trước sao cho: - Bản thân p(x,y, ) không phải là mệnh đề. - Nếu thay x,y, thành giá trị cụ thể thì p(x,y, ) là mệnh đề. Ví dụ. - p(n) = “n +1 là số nguyên tố”. 2 - q(x,y) = “x + y = 1” . 2 2 - r(x,y,z) = “x + y >z”. 58
  59. Cơ sở Logic IV. Logic vị từ 2. Các phép toán trên vị từ Cho trước các vị từ p(x), q(x) theo một biến x ∈ A. Khi ấy, ta cũng có các phép toán tương ứng như trên mệnh đề - Phủ định ¬p(x) - Phép nối liền p(x)∧q(x) - Phép nối rời p(x)∨q(x) - Phép kéo theo p(x)→q(x) - Phép kéo theo hai chiều p(x) ↔ q(x) 59
  60. Cơ sở Logic IV. Logic vị từ Khi xét một mệnh đề p(x) với x ∈ A. Ta có các trường hợp sau - TH1. Khi thay x bởi 1 phần tử a tùy ý∈ A, ta có p(a) đúng. - TH2. Với một số giá trị a ∈ A, ta có p(a) đúng. - TH3. Khi thay x bởi 1 phần tử a tùy ý∈ A, ta có p(a) sai. Ví dụ. Cho vị từ p(x) với x∈R - p(x) = “x2 +1 >0” - p(x) = “x2 -2x+1=0” - p(x) = “x2 -2x+3=0” 60
  61. Cơ sở Logic IV. Logic vị từ Định nghĩa. Cho p(x) là một vị từ theo một biến xác định trên A. Ta định nghĩa các mệnh đề lượng từ hóa của p(x) như sau: - Mệnh đề “Với mọi x thuộc A, p(x) ”, kí hiệu bởi “∀x ∈ A, p(x)”, là mệnh đề đúng khi và chỉ khi p(a) luôn đúng với mọi giá trị a ∈ A. - Mệnh đề “Tồn tại (ít nhất )hay có (ít nhất) một x thuộc A, p(x))” kí hiệu bởi : “∃x ∈ A, p(x)” , là mệnh đề đúng khi và chỉ khi có ít nhất một giá trị x = a0 nào đó sao cho mệnh đề p(a0) đúng. 61
  62. Cơ sở Logic IV. Logic vị từ ∀: được gọi là lượng từ phổ dụng ∃ : được gọi là lượng từ tồn tại Ví dụ. Các mệnh đề sau đúng hay sai - “∀x ∈ R, x2 + 3x + 1 ≤ 0” (S) - “∃x ∈ R, x2 + 3x + 1 ≤ 0” (Đ) - “∀x ∈ R, x2 + 1 ≥ 2x” (Đ) - “∃x ∈ R, x2 + 1 < 0” (S) 62
  63. Cơ sở Logic IV. Logic vị từ Định nghĩa. Cho p(x, y) là một vị từ theo hai biến x, y xác định trên A×B. Ta định nghĩa các mệnh đề lượng từ hóa của p(x, y) như sau: “∀x ∈ A,∀y ∈ B, p(x, y)” = “∀x ∈ A, (∀y ∈ B, p(x, y))” “∀x ∈ A, ∃y ∈ B, p(x, y)” = “∀x ∈ A, (∃y ∈ B, p(x, y))” “∃x ∈ A, ∀y ∈ B, p(x, y)” = “∃x ∈ A, (∀y ∈ B, p(x, y))” “∃x ∈ A, ∃y ∈ B, p(x, y)” = “∃x ∈ A, (∃y ∈ B, p(x, y))” 63
  64. Cơ sở Logic IV. Logic vị từ Ví dụ. - Mệnh đề “∀x ∈ R, ∀y ∈ R, x + 2y < 1” đúng hay sai? Mệnh đề sai vì tồn tại x0 = 0, y0 = 1 ∈ R mà x0 + 2y0 ≥ 1. - Mệnh đề “∀x ∈ R, ∃y ∈ R, x + 2y < 1” đúng hay sai? Mệnh đề đúng vì với mỗi x = a ∈ R, tồn tại ya ∈ R như ya = –a/2, sao cho a + 2ya < 1. 64
  65. Cơ sở Logic IV. Logic vị từ Ví dụ. - Mệnh đề “∀x ∈ R, ∀y ∈ R, x + 2y < 1” đúng hay sai? Mệnh đề sai vì tồn tại x0 = 0, y0 = 1 ∈ R mà x0 + 2y0 ≥ 1. - Mệnh đề “∀x ∈ R, ∃y ∈ R, x + 2y < 1” đúng hay sai? Mệnh đề đúng vì với mỗi x = a ∈ R, tồn tại ya ∈ R như ya = –a/2, sao cho a + 2ya < 1. 65
  66. Cơ sở Logic IV. Logic vị từ Ví dụ. - Mệnh đề “∃x ∈ R, ∀y ∈ R, x + 2y < 1” đúng hay sai Mệnh đề sai vì không thể có x = a ∈ R để bất đẳng thức a + 2y < 1 được thỏa với mọi y ∈ R (chẳng hạn, y = –a/2 + 2 không thể thỏa bất đẳng thức này). - Mệnh đề “∃x ∈ R, ∃y ∈ R, x + 2y < 1” đúng hay sai? Mệnh đề đng vì tồn tại x0 = 0, y0 = 0 ∈ R chẳng hạn thỏa x0 + 2y0 < 1. 66
  67. Cơ sở Logic IV. Logic vị từ Định lý. Cho p(x, y) là một vị từ theo hai biến x, y xác định trên A×B. Khi đó: 1) “∀x ∈ A, ∀y ∈ B, p(x, y)” ⇔ “∀y ∈ B, ∀x ∈ A, p(x, y)” 2) “∃x ∈ A, ∃y ∈ B, p(x, y)” ⇔ “∃y ∈ B, ∃x ∈ A, p(x, y)” 3) “∃x ∈ A, ∀y ∈ B, p(x, y)” ⇒ “∀y ∈ B, ∃x ∈ A, p(x, y)” Chiều đảo của 3) nói chung không đúng. 67
  68. Cơ sở Logic IV. Logic vị từ Phủ định của mệnh đề lượng từ hóa vị từ p(x,y, ) có được bằng các thay ∀ thành ∃, thay ∃ thành ∀ và vị từ p(x,y, ) thành ¬ p(x,y, ). Với vị từ theo 1 biến ta có : 68
  69. Cơ sở Logic IV. Logic vị từ Với vị từ theo 2 biến. 69
  70. Cơ sở Logic IV. Logic vị từ Ví dụ phủ định các mệnh đề sau - “∀x ∈ A, 2x + 1 ≤ 0” - “∀ε > 0, ∃δ > 0, ∀x ∈ R, | x – a| 0” “∃ε > 0, ∀δ > 0, ∃x ∈ R, | x – a| < δ ∧ (|f(x) – f(a)| ≥ ε)”. 70
  71. Cơ sở Logic IV. Logic vị từ Qui tắc đặc biệt hóa phổ dụng: Nếu một mệnh đề đúng có dạng lượng từ hóa trong đó một biến x ∈ A bị buộc bởi lượng từ phổ dụng ∀, khi ấy nếu thay thế x bởi a ∈ A ta sẽ được một mệnh đề đúng Ví dụ: “Mọi người đều chết” “Socrate là người” Vậy “Socrate cũng chết” 71
  72. V. Tập hợp 1. Khái niệm Tập hợp là một khái niệm cơ bản của Toán học. Ví dụ: 1) Tập hợp sinh viên của một trường đại học. 2) Tập hợp các số nguyên 3) Tập hợp các trái táo trên một cây cụ thể.
  73. V. Tập hợp Lực lượng của tập hợp Số phần tử của tập hợp A được gọi là lực lượng của tập hợp, kí hiệu |A|. Nếu A có hữu hạn phần tử, ta nói A hữu hạn. Ngược lại, ta nói A vô hạn. Ví dụ. N, Z, R, là các tập vô hạn X={1,3,4,5} là tập hữu hạn |X|=4
  74. a. Cách xác định tập hợp Liệt kê tất cả các phần tử của tập hợp A={1,2,3,4,a,b} Đưa ra tính chất đặc trưng B={ n ∈N | n chia hết cho 3} b. Quan hệ giữa các tập hợp Tập hợp con
  75. V. Tập hợp 2. Các phép toán tập hợp a. Phép hợp Hợp của 1 tập hợp A và B là tập hợp tạo bởi B tất cả các phần tử A thuộc A hoặc thuộc B. Ký hiệu: Ví dụ:
  76. V. Tập hợp Tính chất: 1. Tính lũy đẳng 2. Tính giao hoán 3. Tính kết hợp 4. Hợp với tập rỗng b. Phép giao Giao của 2 tập hợp A và B là tập hợp tạo bởi các phần tử vừa thuộc A vừa thuộc B. A B Ký hiệu:
  77. V. Tập hợp Tính chất: 1) Tính lũy đẳng 2) Tính giao hoán 3) Tính kết hợp 4) Giao với tập rỗng Tính phân phối của phép giao và hợp
  78. V. Tập hợp Luật De Morgan:
  79. V. Tập hợp 3. Tập các tập con của một tập hợp Cho X là một tập hợp. Khi đó tập tất cả các tập con của X được ký hiệu là P(X) Ví dụ
  80. V. Tập hợp 4. Tích Đề Các: Tích Đề các của tập hợp A với tập hợp B là tập hợp bao gồm tất cả các cặp thứ tự (x,y) với Ký hiệu A.B hoặc Chú ý: Tích của 2 tập hợp không có tính chất giao hoán.
  81. V. Tập hợp Các phép toán giao, hợp, tích có thể mở rộng cho nhiều tập hợp
  82. VI. Ánh xạ 1. Định nghĩa. Cho hai tập hợp X, Y ≠ ∅. Ánh xạ giữa hai tập X và Y là một qui tắc sao cho mỗi x thuộc X tồn tại duy nhất một y thuộc y để y = f(x) Ta viết: Nghĩa là
  83. VI. Ánh xạ Không là ánh xạ
  84. VI. Ánh xạ Hai ánh xạ bằng nhau. Hai ánh xạ f và g từ X vào Y được gọi là bằng nhau nếu ∀x ∈ X, f(x) = g(x). Ví dụ: Xét ánh xạ f(x)=(x-1)(x+1) và g(x) =x2-1 từ R->R Ảnh và ảnh ngược. Cho ánh xạ f từ X vào Y và A ⊂ X, B ⊂ Y. Ta định nghĩa: f(A) = {f(x) | x ∈ A} = {y ∈ Y | ∃x ∈ A, y = f(x)} được gọi là ảnh của A
  85. VI. Ánh xạ f(A) = {f(x) | x ∈ A} = {y ∈ Y | ∃x ∈ A, y = f(x)} Như vậy y ∈ f(A) ⇔ ∃x ∈ A, y = f(x); y ∉ f(A) ⇔ ∀x ∈ A, y ≠ f(x). f–1(B) = {x ∈ X | f(x) ∈ B} được gọi là ảnh ngược của B f–1(B) Như vậy x ∈ f–1(B) ⇔ f(x) ∈ B
  86. VI. Ánh xạ Ví dụ. Cho f: R →R được xác định f(x)=x2 +1 Ta có f([1,3])=[2,10] f([-2,-1])=[2,5] f([-1,3])=[1,10] f((1,5)) = (2,26) f–1(1)={0} f–1(2)={-1,1} f–1(-5)= ∅ f–1([2,5])= [-2,-1] ∪[1,2]
  87. VI. Ánh xạ 2. Phân loại ánh xạ a. Đơn ánh Ta nói f : X → Y là một đơn ánh nếu hai phần tử khác nhau bất kỳ của X đều có ảnh khác nhau, nghĩa là: Ví dụ. Cho f: N →R được xác định f(x)=x2 +1 (là đơn ánh) g: R →R được xác định g(x)=x2 +1 (không đơn ánh)
  88. VI. Ánh xạ ∀x, x' ∈ X, x ≠ x' ⇒ f(x) ≠ f(x' ) Như vậy f : X → Y là một đơn ánh ⇔ (∀x, x' ∈ X, f(x) = f(x') ⇒ x = x'). ⇔ (∀y ∈ Y, f –1(y) có nhiều nhất một phần tử). ⇔ (∀y ∈ Y, phương trình f(x) = y (y được xem như tham số) có nhiều nhất một nghiệm x ∈ X. f : X → Y không là một đơn ánh ⇔ (∃x, x' ∈ X, x ≠ x' và f(x) = f(x')). ⇔ (∃y ∈ Y, phương trình f(x) = y (y được xem như tham số) có ít nhất hai nghiệm x ∈ X
  89. VI. Ánh xạ b. Toàn ánh Ta nói f : X → Y là một toàn ánh f(X)=Y, nghĩa là: Ví dụ. Cho f: R →R được xác định f(x)=x3 +1 (là toàn ánh) g: R →R được xác định g(x)=x2 +1 (không là toàn ánh)
  90. VI. Ánh xạ Toàn ánh ⇔ f(X)=Y. Như vậy f : X → Y là một toàn ánh ⇔ (∀y ∈ Y, ∃x ∈ X, y = f(x)) ⇔ (∀y ∈ Y, f –1(y) ≠ ∅); ⇔ ∀y ∈ Y, phương trình f(x) = y (y được xem như tham số) có nghiệm x ∈ X. f : X → Y không là một toàn ánh ⇔ (∃y ∈ Y, ∀x ∈ X, y ≠ f(x)); ⇔ (∃y ∈ Y, f –1(y) ≠ ∅);
  91. VI. Ánh xạ c. Song ánh Ta nói f : X → Y là một song ánh nếu f vừa là đơn ánh vừa là toàn ánh. Ví dụ. Cho f: R →R được xác định f(x)=x3 +1 (là song ánh) g: R →R được xác định g(x)=x2 +1 (không là song ánh)
  92. VI. Ánh xạ Tính chất. f : X → Y là một song ánh ⇔ (∀y ∈ Y, ∃!x ∈ X, y = f(x)); ⇔ (∀y ∈ Y, f –1(y) có đúng một phần tử); ⇔ ∀y ∈ Y, phương trình f(x) = y (y được xem như tham số) có duy nhất một nghiệm x ∈ X.
  93. VI. Ánh xạ Ánh xạ ngược. Xét f : X → Y là một song ánh. Khi đó, theo tính chất trên, với mọi y ∈ Y, tồn tại duy nhất một phần tử x ∈ X thỏa f(x) = y. Do đó tương ứng y x là một ánh xạ từ Y vào X. Ta gọi đây là ánh xạ ngược của f và ký hiệu f–1. Như vậy: f–1 : Y → X y f–1(y) = x với f(x) = y. Ví dụ. Cho f là ánh xạ từ R vào R f(x) =2x+1. Khi đó f–1(x)=(y-1)/2
  94. VI. Ánh xạ 3. Tích ánh xạ. Cho hai ánh xạ f : X → Y và g : Y' → Z trong đó Y ⊂ Y'. Ánh xạ tích h của f và g là ánh xạ từ X vào Z xác định bởi: h : X → Z x h(x) = g(f(x)) Ta viết: h = gof : X → Y → Z
  95. VI. Ánh xạ Ví dụ. Tìm gof, fog
  96. V. Quy nạp 2 Chứng minh 1 + 3 + 5 + 7 + + (2n-1)= n với n ≥ 1 1. Phương pháp Với những bài toán chứng minh tính đúng đắn của một biểu thức mệnh đề có chứa tham số n, như P(n). Quy nạp toán học là một kỹ thuật chứng minh P(n) đúng với mọi số tự nhiên n ≥N0. - Quá trình chứng minh quy nạp bao gồm 2 bước: Bước cơ sở: Chỉ ra P(N0) đúng. Bước quy nạp: Chứng minh nếu P(k) đúng thì P(k+1) đúng. Trong đó P(k) được gọi là giả thiết quy nạp.
  97. V. Quy nạp Ví dụ. Chứng minh 1+3+ +(2n-1)=n2 với mọi số nguyên dương n. Gọi P(n) = “1+3+ (2n-1)=n2 “ + Bước cơ sở: Hiển nhiên P(1) đúng vì 1= 12.
  98. V. Quy nạp + Bước quy nạp: - Giả sử P(k) đúng, tức là - Ta phải chỉ ra rằng P(k+1) đúng, tức là T ừ giả thiết quy nạp ta có: - Suy ra, P(k+1) đúng. Vậy theo nguyên lý quy nạp P(n) đúng với mọi số nguyên dương n
  99. V. Quy nạp