Giáo trình Ô tô 1 (Phần 2)

pdf 106 trang cucquyet12 5440
Bạn đang xem 20 trang mẫu của tài liệu "Giáo trình Ô tô 1 (Phần 2)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfgiao_trinh_o_to_1_phan_2.pdf

Nội dung text: Giáo trình Ô tô 1 (Phần 2)

  1. CHƯƠNG 6 TÍNH KINH TẾ NHIÊN LIỆU CỦA Ô TÔ Mục tiêu: Sau khi học xong chương này các sinh viên có khả năng: 1. Nêu được các chỉ tiêu kinh tế nhiên liệu của ôtô. 2. Viết được phương trình tiêu hao nhiên liệu của ôtô. 3. Trình bày được đặc tính tiêu hao nhiên liệu của ôtô khi chuyển động ổn định. 4. Trình bày được đặc tính tiêu hao nhiên liệu của ôtô khi chuyển không động ổn định. 94
  2. 6.1. CÁC CHỈ TIÊU KINH TẾ NHIÊN LIỆU CỦA ÔTÔ: Tính kinh tế chung của ôtô được đánh giá bằng giá thành theo đơn vị số lượng và quãng đường vận chuyển: tấn- km hoặc một hành khách- km. Tổng giá thành vận chuyển của ôtô phụ thuộc vào: kết cấu của ôtô, tình trạng kỹ thuật của chúng, giá thành lượng nhiên liệu tiêu thụ, điều kiện đường xá, điều kiện khí hậu khi sử dụng ôtô, tiền lương phải trả Tính kinh tế nhiên liệu của ôtô được đánh giá bằng mức tiêu hao nhiên liệu trên quãng đường 100km hoặc mức tiêu hao nhiên liệu cho một tấn-km. Đối với ôtô khách được tính theo mức tiêu hao nhiên liệu trên một hành khách-km hoặc 100km. Mức tiêu hao nhiên liệu cho một đơn vị quãng đường chạy qd của ôtô được tính theo biểu thức: 100Q l q (6.1) d S* 100km Trong đó: Q – Lượng tiêu hao nhiên liệu (l). S*– Quãng đường chạy được của ôtô (km). Mức tiêu hao nhiên liệu trên đơn vị quãng đường chạy tính theo công thức (6.1) không kể đến khối lượng hàng hố mà ôtô vận chuyển được mặc dù khi ôtô chuyên chở hàng hố thì lượng nhiên liệu tiêu thụ sẽ lớn hơn khi không có chuyên chở hàng hố. Cho nên cần đánh giá tính kinh tế nhiên liệu của ôtô theo một đơn vị hàng hóa vận chuyển. Ví dụ đối với ôtô vận tải, mức tiêu hao nhiên liệu cho một đơn vị hàng hóa qc được tính theo biểu thức sau: Q n kg qc (6.2) Gt St t.km Trong đó: Gt – Khối lượng hàng hố chuyên chở (t). St – Quãng đường chuyên chở của ôtô khi có hàng hóa (km). n – Tỷ trọng nhiên liệu (kg/l). 6.2. PHƯƠNG TRÌNH TIÊU HAO NHIÊN LIỆU CỦA ÔTÔ: Khi ôtô chuyển động, tính kinh tế nhiên liệu của nó phụ thuộc vào tính kinh tế nhiên liệu của động cơ đặt trên ôtô và tiêu hao công suất để khắc phục lực cản chuyển động. Khi thí nghiệm động cơ trên bệ thí nghiệm, ta xác định được mức tiêu hao nhiên liệu theo thời gian (kg/h) và công suất phát ra của động cơ Pe (kW). Mức tiêu hao nhiên liệu theo thời gian được xác định theo biểu thức: Q kg G n (6.3) T t h Trong đó: t – Thời gian làm việc của động cơ (h). Để đánh giá tính kinh tế nhiên liệu của động cơ, ta dùng suất tiêu hao nhiên liệu có ích ge: 95
  3. GT Qρn kg ge (6.4) Pe Pe t kW.h Trong đó: Pe – Công suất có ích của động cơ (kW). Thông qua thí nghiệm động cơ và tính tốn, ta xây dựng được đồ thị quan hệ giữa công suất động cơ và suất tiêu hao nhiên liệu với số vòng quay của trục khuỷu động cơ: Pe = f(ne) và ge = f(ne) Đồ thị này được trình bày trên hình 6.1 và được gọi là đường đặc tính ngồi của động cơ. Pe ge Pe ge ne Hình 6.1: Đặc tính ngồi của động cơ. Từ công thức (6.1) và (6.4) ta rút ra được biểu thức để xác định mức tiêu hao nhiên liệu như sau: 100ge Pe t 100ge Pe 1 qd * (6.5) S ρn vρn 100km Trong đó: S* v vận tốc chuyển động của ôtô (km/h). t 96
  4. Khi ôtô chuyển động, công suất của động cơ phát ra cần thiết để khắc phục các lực cản chuyển động và được biểu thị theo phương trình cân bằng công suất như sau: (F F F )v P ψ ω j (kW) (6.6) e 1000η Trong đó: F ;F ;F j – Các lực cản chuyển động (N). v – Vận tốc chuyển động của ôtô (m/s). Như vậy mức tiêu hao nhiên liệu của ôtô phụ thuộc vào suất tiêu hao nhiên liệu có ích của động cơ và công suất tiêu hao để khắc phục các lực cản chuyển động. Từ công thức (6.5) và (6.6) ta có công thức tính mức tiêu hao nhiên liệu: 0,36ge (Fψ Fω Fj ) 1 qd (6.7) ρn η 100km Phương trình (6.7) gọi là phương trình đánh giá mức tiêu hao nhiên liệu cho ôtô chuyển động không ổn định. Khi ôtô chuyển động ổn định Fj = 0, thì mức tiêu hao nhiên liệu sẽ là: 0,36ge (Fψ Fω ) 1 qd (6.8) ρn η 100km Từ phương trình (6.7) và (6.8) ta rút ra nhận xét sau: Mức tiêu hao nhiên liệu trên một đơn vị quãng đường chạy giảm khi khi suất tiêu hao nhiên liệu có ích của động cơ giảm, nghĩa là nếu động cơ có kết cấu và quá trình làm việc hồn thiện thì giảm được mức tiêu hao nhiên liệu của ôtô trên một đơn vị quãng đường chạy. Tình trạng làm việc của hệ thống truyền lực không tốt sẽ làm giảm hiệu suất truyền lực và làm tăng mức tiêu hao nhiên liệu trên một đơn vị quãng đường chạy. Khi lực cản chuyển động tăng lên thì mức tiêu hao nhiên liệu sẽ tăng. Trong quá trình ôtô tăng tốc sẽ làm tăng mức tiêu hao nhiên liệu. 6.3. ĐẶC TÍNH TIÊU HAO NHIÊN LIỆU CỦA ÔTÔ KHI CHUYỂN ĐỘNG ỔN ĐỊNH: Sử dụng phương trình (6.8) để phân tích tính tốn mức tiêu hao nhiên liệu, ta sẽ gặp nhiều khó khăn vì trị số suất tiêu hao nhiên liệu có ích của động cơ ge phụ thuộc vào số vòng quay của trục khuỷu động cơ ne và mức độ sử dụng công suất của động cơ YP. Vì vậy ta giải quyết vấn đề này bằng phương pháp xây dựng đường đặc tính tiêu hao nhiên liệu của ôtô. Đầu tiên, dựa vào thí nghiệm động cơ trên bệ thí nghiệm để lập đồ thị suất tiêu hao nhiên liệu có ích của động cơ theo mức độ sử dụng công suất của động cơ ge = f(YP) tương ứng với các số vòng quay khác nhau của động cơ (hình 6.2). Qua đồ thị này ta có nhận xét: mức độ sử dụng công suất của động cơ càng tăng và số vòng quay của trục khuỷu động cơ càng giảm thì mức tiêu hao nhiên liệu càng giảm, vì ge càng giảm. Vì thế khi mức độ sử dụng công suất động cơ như nhau (ví dụ tại điểm YP1) thì 97
  5. ’’’ suất tiêu hao nhiên liệu có ích của động cơ ge ở số vòng quay ne sẽ nhỏ hơn khi ở số vòng ’’ ’ quay ne và ne . ge ’ ne ’’ ne ,,, ne 0 YP1 YP ’ ’’ ’’’ Hình 6.2: Đồ thị đặc tính tải trọng của động cơ( ne > ne >ne ). Tiếp đó ta xây dựng đồ thị cân bằng công suất của ôtô khi chuyển động ổn định với các hệ số cản  của các loại mặt đường khác nhau để tìm được mức độ sử dụng công suất khác nhau của động cơ YP (hình 6.3). Ta xây dựng đồ thị Pe = f(v) cho một tỉ số truyền của hệ thống truyền lực. Căn cứ vào phương trình cân bằng công suất của ôtô khi chuyển động ổn định, ta có: F F P   (6.9) e  Lập đường cong công suất phát ra của động cơ Pe =f(v), xuất phát từ đường cong này, xây dựng về phía dưới của nó đường cong biểu thị công suất tiêu hao cho lực cản không khí và có kể đến công suất tiêu hao cho ma sát trong hệ thống truyền lực: F Wv3  f (v) (6.10)   Sau đó lập các đường cong biểu diễn công suất cản của mặt đường với các hệ số cản F khác nhau ψ f (v) và có kể đến công suất tiêu hao cho ma sát trong hệ thống truyền lực: η F Gv (6.11)   Dựa vào đồ thị (hình 6.3), ta có thể xác định được mức độ sử dụng công suất của động cơ YP ứng với số vòng quay nào đó của động cơ, tức là ứng với một vận tốc v nào đó ở số truyền đã cho và phụ thuộc vào điều kiện đường xá đã cho. 98
  6. ge Pe F a  Pc F  b c v 0 v1 ne Hình 6.3: Đồ thị cân bằng công suất của ôtô ứng với các hệ số cản  khác nhau của mặt đường. Chẳn hạn như trên hình 6.3, để đảm bảo cho ôtô có thể chuyển động được với vận tốc v1 trên loại đường có hệ số cản 1 thì cần phải có công suất được xác định bằng tổng số hai đoạn (a+c). Còn công suất của động cơ phát ra tại vận tốc này bằng tổng số hai đoạn (a+b). Từ đó ta xác định được mức độ sử dụng công suất động cơ YP theo tỷ số: a c Y (6.12) P a b Nếu tính YP theo phần trăm ta có: a c Y % 100% (6.13) P a b Như vậy dựa vào đồ thị hình 6.3, ta xác định được trị số YP (ứng với v,  cho trước), cũng tương ứng với vận tốc v và số truyền đã cho, ta xác định được số vòng quay của trục khuỷu động cơ ne tương ứng theo biểu thức: vit vg ne (6.14) πr b ph Từ trị số YP và ne tìm được, dựa vào đồ thị hình 6.2, ta xác định được trị số suất tiêu hao nhiên liệu có ích của động cơ ge. Sau khi tính tốn được trị số của các lực cản chuyển động F và F , rồi thay các trị số vừa tìm được: ge, F , F vào phương trình (6.8), ta xác định được trị số của mức tiêu hao nhiên liệu và từ đó xây dựng đường cong mức tiêu hao nhiên liệu của ôtô khi chuyển động ổn định. Qs 99
  7. 3 c f b  e a  2 1 d 0 v vkt qđmin Hình 6.4: Đồ thị đặc tính tiêu hao nhiên liệu của ôtô khi chuyển động ổn định. Đồ thị ở hình 6.4 được gọi là đồ thị đặc tính tiêu hao nhiên liệu của ôtô khi chuyển động ổn định. Đồ thị hình 6.4 cho phép ta xác định được mức độ tiêu hao nhiên liệu (l/100km) khi biết các trị số  và v. Qua đồ thị này ta có nhận xét rằng: Trên mỗi đường cong của đồ thị có hai điểm đặc trưng cơ bản nhất. Điểm thứ nhất xác định mức tiêu hao nhiên liệu nhỏ nhất qđmin khi ôtô chuyển động trên loại đường có hệ số cản  (ví dụ qđmin ứng với đường1 ), vận tốc tại điểm đó được gọi là vận tốc kinh tế và ký hiệu là vkt. Điểm thứ hai của đường cong (điểm cuối cùng của đường cong) đặc trưng cho lượng tiêu hao nhiên liệu của động cơ làm việc ở chế độ tồn tải (các điểm a,b,c). Các điểm này ứng với vận tốc chuyển động lớn nhất của ôtô vmax với các hệ số cản  khác nhau. Ngồi ra còn có điểm bất thường trên mỗi đường cong (d,e,f) nằm về phía bên phải của vkt và lồi lên trên ứng với sự bắt đầu hoạt động của bộ tiết kiệm nhiên liệu, hỗn hợp hòa khí được làm giàu thêm. Đối với động cơ diêden thì ở khu vực vận tốc nhỏ, đường cong sẽ thoải hơn so với ôtô có đặt động cơ xăng, vì tính kinh tế nhiên liệu của động cơ diêden ở khu vực vận tốc nhỏ tốt hơn so với động cơ xăng. Cần chú ý rằng khi ôtô chuyển động với vận tốc kinh tế vkt thì đạt được mức tiêu hao nhiên liệu nhỏ nhất qđmin. Tuy nhiên điều này không có nghĩa là ta mong muốn ôtô chuyển động với vận tốc này, vì tăng vận tốc chuyển động của ôtô sẽ tăng được năng suất vận chuyển và giảm được giá thành chung cho trong vận tải ôtô. Vì vậy khi chọn vận tốc chuyển động thích hợp, không nhất thiết xuất phát từ điều kiện tính kinh tế của nhiên liệu của ôtô mà cần phải căn cứ vào các điều kiện sau đây: - Thời gian vận chuyển cần ít. - Đảm bảo an tồn chuyển động trong điều kiện đã cho. - Đảm bảo điều kiện thích nghi cho người lái và hành khách. 6.4. ĐẶC TÍNH TIÊU HAO NHIÊN LIỆU KHI XE CHUYỂN ĐỘNG KHÔNG ỔN ĐỊNH: Trong điều kiện sử dụng thực tế của ôtô, tình trạng mặt đường luôn thay đổi và chế độ tải của động cơ cũng luôn luôn thay đổi. Vì vậy phần lớn thời gian hoạt động của ôtô là chuyển động không ổn định, lúc thì chuyển động có gia tốc lúc thì lăn trơn, lúc thì phanh ôtô. 100
  8. Khi ôtô chuyển động tăng tốc thì tốc độ của ôtô tăng lên, làm tăng lực cản chuyển động và dẫn đến làm tăng mức tiêu hao nhiên liệu. Tuy nhiên lúc đó lại sử dụng tốt nhất công suất của động cơ và dẫn đến giảm suất tiêu hao nhiên liệu có ích của động cơ. Lượng tiêu hao nhiên liệu trong thời gian ôtô chuyển động tăng tốc sẽ lớn hơn so với khi ôtô chuyển động với vận tốc không đổi ( v = const; j = 0 ) vì ngồi phần nhiên liệu tiêu hao để khắc phục các lực cản chuyển động, còn phần nữa phải sử dụng để tăng tốc ( tăng động năng của ôtô ). Nếu như cho ôtô chuyển động tăng tốc đến vận tốc v1 , rồi sau đó cho ôtô chuyển động lăn trơn đến khi vận tốc giảm đến v2 thì phần động năng này được trả lại ( khi ôtô lăn trơn thì động cơ làm việc ở chế độ không tải hoặc tắt máy ) lượng tiêu hao nhiên liệu rất nhỏ. Vì vậy mức tiêu hao nhiên liệu chung có thể giảm hơn so với khi chuyển động với vận tốc không đổi. Quá trình ôtô chuyển động tăng tốc và lăn trơn gọi là chu kì gia tốc – lăn trơn và được minh họa trên đồ thị 6.5. Chu kì này được lặp đi lặp lại. Sau đây chúng ta sẽ xác định mức tiêu hao nhiên liệu của ôtô trong quá trình gia tốc – lăn trơn. 6.4.1. Lượng tiêu hao nhiên liệu trong quá trình tăng tốc của ôtô: Lượng tiêu hao nhiên liệu trong quá trình này được tính theo biểu thức sau đây: g Q A . etb (6.15) j t 36.105 Ở đây: Q j - Lượng tiêu hao nhiên liệu của ôtô trong quá trình tăng tốc (kg). getb - Suất tiêu hao nhiên liệu có ích trung bình của động cơ trong khoảng vận tốc từ v1 đến v2 ( kg/kWh). At - Tổng số công tiêu tốn trong quá trình tăng tốc ôtô có kể đến tổn thất năng lượng cho lực cản trong hệ thống truyền lực : Ac Ad At ηt Trong đó: Ac - Công tiêu tốn để khắc phục các lực cản khi ôtô chuyển động tăng tốc. Ac = ( Fψ Fω ) Sj Sj - Quãng đường ôtô chuyển động tăng tốc (m). Fω - Lực cản không khí: 2 Fω = W. vtb v tb - Vận tốc trung bình của ôtô. v v v 1 2 tb 2 Fψ - Lực cản tổng cộng của đường. 101
  9. Fψ = ψ.G Ad - Công cần thiết để tăng động năng của ôtô khi chuyển động tăng tốc (Nm): G 1 A = (v2 v2 ) J (ω2 ω2 ) d 2g 1 2 2 b b1 b2 Trong đó: Jb - Tổng mômen quán tính của các bánh xe. ωb1,ωb2 - Vận tốc góc của bánh xe ứng với lúc cuối và lúc đầu của quá trình tăng tốc (ứng với vận tốc v1 và v2 của ôtô). v tchu kì v1 vtb v2 0 s s j Hình 6.5 : Đồ thị slt ôtô chuyển động gia tốc – lăn trơn 6.4.2. Xác định lượng tiêu hao nhiên liệu của ôtô trong thời gian chuyển động lăn trơn: Nếu trong thời gian một giờ, lượng tiêu hao nhiên liệu là G xx (kg) thì trong thời gian t lt (s) nào đó, lượng tiêu hao nhiên liệu khi lăn trơn sẽ là: G .t Q xx lt (kg) (6.16) lt 3600 Thời gian t lt (s) chuyển động lăn trơn xác định theo biểu thức : v1 v2 t lt (s) (6.17) jtb Ở đây: m j - Gia tốc chuyển động chậm dần trung bình khi ôtô chuyển động lăn trơn ( ). tb s 2 102
  10. F F g m ψ xx jtb [ψ ] ( 2 ). G δi s Trong đó: Fxx - Lực ma sát trong hệ thống truyền lực khi động cơ làm việc ở chế độ không tải thu gọn về bánh xe chủ động (N). δi - Hệ số tính đến ảnh hưởng của các khối lượng quay khi ôtô chuyển động lăn trơn. Thay trị số t lt ở công thức (6.17) vào công thức (6.16) ta được: G xx .(v1 v2 ) Qlt (kg) (6 .18) 3600.jtb Như vậy tổng lượng tiêu hao nhiên liệu cho một chu kì gia tốc – lăn trơn sẽ là: Qt Q j Qlt (kg) A .g G .(v v ) t etb xx 1 2 Qt 5 (kg) (6 .19) 36.10 3600.jtb Nếu xác định được quãng đường khi ôtô chuyển động tăng tốc và khi chuyển động lăn trơn , ta có thể tìm được mức tiêu hao nhiên liệu trên một đơn vị quãng đường chạy như sau: 100Qt 1 Qst ( ) (6.20) (Sj Slt )ρn 100km Cần chú ý rằng ở phương trình (6.20), ta không tính đến năng lượng tiêu hao cho phần gia tốc bánh đà động cơ và các tiêu hao nhiên liệu phụ khác nữa dẫn đến một lượng tiêu hao nhiên liệu phụ thêm vào lượng tiêu hao nhiên liệu chung. 103
  11. CHƯƠNG 7 PHÂN BỐ TẢI TRỌNG PHÁP TUYẾN, KHẢ NĂNG BÁM VÀ TÍNH ỔN ĐỊNH CỦA Ô TÔ. Mục tiêu : Sau khi học xong chương này các sinh viên có khả năng: 1. Xác định được phản lực thẳng góc tác dụng lên các bánh xe trong những điều kiện chuyển động khác nhau của ô tô. 2. Xác định được hệ số phân bố tải trọng lên các bánh xe của ô tô. 3. Định nghĩa được hệ số thay đổi tải trọng lên các bánh xe của ô tô. 4. Định nghĩa được tính ổn định của ô tô, tính ổn định dọc tĩnh, tính ổn định dọc động. 5. Xác định được góc dốc giới hạn mà tại đó ô tô bị lật đổ hay bị trượt trong những điều kiện chuyển động khác nhau. 6. Xác định được vận tốc giới hạn mà tại đó ô tô bị lật đổ hay bị trượt trong những điều kiện chuyển động khác nhau. 105
  12. 7.1. PHÂN BỐ TẢI TRỌNG VÀ KHẢ NĂNG BÁM CỦA Ô TÔ: 7.1.1. Xác định phản lực thẳng góc của đường tác dụng lên các bánh xe trong mặt phẳng dọc: Như chúng ta đã biết: Tính ổn định của ô tô phụ thuộc vào sự phân bố tải trọng lên các cầu và khả năng bám giữa các bánh xe với mặt đường. Trong đó khả năng bám lại phụ thuộc vào phản lực thẳng góc của đường tác dụng các bánh xe và hệ số bám giữa bánh xe với mặt đường. Khi xe chuyển động, các phản lực thẳng góc tác dụng lên các bánh xe luôn thay đổi tuỳ thuộc vào trạng thái và điều kiện chuyển động. Giá trị của các phản lực này có ảnh hưởng trực tiếp đến các chỉ tiêu kỹ thuật của ô tô như: khả năng kéo và bám, chất lượng phanh, tính ổn định và tuổi thọ của các chi tiết. Bởi vậy, chúng ta sẽ xác định các phản lực đó trong các trường hợp cụ thể sau: 7.1.1.1. Trường hợp chuyển động tổng quát: Xét ô tô chuyển động lên dốc không ổn định có kéo rơmóc: v a L F b h lm hg F j T Mj1 Gsin Z Gcos 1 M f1 M G k O1 Ff1 Mj2 Z2 Mf2 Fm Fk O2 hm Ff2 Hình 7.1: Sơ đồ các lực và mômen tác dụng lên ôtô khi chuyển động lên dốc. Trên hình 7.1 trình bày sơ đồ các lực và mômen tác dụng lên ôtô đang chuyển động tăng tốc ở trên dốc. Ý nghĩa của các ký hiệu ở trên hình vẽ như sau: G – Trọng lượng tồn bộ của ôtô. 106
  13. Fk – Lực kéo tiếp tuyến ở các bánh xe chủ động. Ff1 – Lực cản lăn ở các bánh xe cầu trước. Ff2 – Lực cản lăn ở các bánh xe cầu sau. F – Lực cản không khí. Fi – Lực cản lên dốc. Fj – Lực cản quán tính khi xe chuyển động không ổn định (có gia tốc). Fm – Lực cản ở móc kéo. Mf1 – Mômen cản lăn ở các bánh xe cầu trước. Mf2 – Mômen cản lăn ở các bánh xe cầu sau. – Góc dốc của mặt đường. f – Hệ số cản lăn. rb – Bán kính tính tốn của bánh xe. hg – Tọa độ trọng tâm của xe theo chiều cao. hm – Khoảng cách từ điểm đặt lực kéo móc đến mặt đường. L – Chiều dài cơ sở của ô tô. lm – Khoảng cách từ tâm bánh xe sau đến điểm đặt lực kéo móc. Z1, Z2 – Phản lực pháp tuyến của mặt đường tác dụng lên các bánh xe ở cầu trước và cầu sau. Mj1, Mj2 – Mômen cản quán tính của bánh xe, thông thường trị số này nhỏ nên có thể bỏ qua. Qua việc lấy mômen lần lượt đối với điểm O2, O1 (O1, O2 là giao điểm của mặt đường với mặt phẳng thẳng đứng qua trục của bánh xe cầu trước, cầu sau) và rút gọn ta được: G cos (b frb ) (Gsin Fj F )hg Fmh m Z = (7.1) 1 L G cos (a fr ) (Gsin F F )h F h Z b j  g m m (7.2) 2 L 7.1.1.2. Trường hợp xe chuyển động ổn định trên đường nằm ngang, không kéo rơmóc: Trong trường hợp này thì: Xe chuyển động ổn định nên Fj = 0; không kéo rơmóc nên Fm = 0, và xe chuyển động trên đường bằng α = 0 nên Fi = Gsin α = 0. v F T  Mk G hg h Mf2 Z2 Mf1 Z1 Fk rb O2 O1 Ff2 Ff1 b a 107 L
  14. Hình 7.2: Sơ đồ mômen và lực tác dụng lên ô tô chuyển động trên đường nằm ngang. Để xác định các lực Z1k, Z2k ta lập phương trình mômen đối với điểm O2 và O1 rồi rút gọn, ta được: G(b fr ) F h Z b  g  (7.3) 1k L  G(a fr ) F h Z b  g  2k L 7.1.1.3. Trường hợp xe đang phanh trên đường nằm ngang, không kéo rơmóc: T F j G hg Z2p Z1p rb Ff2 Ff1 F Fp2 O2 b a p1 O1 L Hình 7.3: Sơ đồ lực tác dụng lên ô tô khi phanh trên đường nằm ngang, không kéo rơmóc. Trong trường hợp này ta coi lực cản không khí F 0 , mômen cản lăn Mf 0, lực quán tính cùng chiều chuyển động của xe. Tương tự như trên ta cũng xác định được Z1p và Z2p thông qua việc lấy mômen đối với điểm O2 và O1, rồi rút gọn ta được: Gb Fh j g  Z1p L  (7.4) Ga Fhj g Z  2p L 7.1.1.4. Trường hợp xe đứng yên trên đường nằm ngang, không kéo rơmóc: 108
  15. Trong trường hợp này chỉ còn ba lực tác dụng lên xe: Trọng lượng tồn bộ của xe G và các phản lực thẳng đứng tác dụng lên các bánh xe của cầu trước và cầu sau ở trạng thái tĩnh Z1t và Z2t . T G hg Z2t Z1t O2 b a O1 L Hình 7.4: Sơ đồ lực tác dụng lên xe khi đứng yên. Z1t và Z2t cũng được xác định bằng cách lấy mômen đối với điểm O2 và O1: Gb Ga Z = ; Z = (7.5) 1t L 2t L 7.1.1.5. Hệ số phân bố tải trọng lên các bánh xe của ô tô: Trong thực tế, ô tô làm việc ở những điều kiện khác nhau tuỳ thuộc vào điều kiện đường xá và sự điều khiển của người lái. Do đó trị số các phản lực thẳng góc từ đường tác dụng lên các bánh xe cũng bị thay đổi theo. Tuy nhiên, các hợp lực Z1 + Z2 vẫn luôn bằng trọng lượng của xe. Nghĩa là khi chuyển động tiến, thì trọng lượng phân ra cầu trước sẽ giảm đi và trọng lượng phân ra cầu sau sẽ tăng lên. Khi phanh ô tô, trọng lượng phân ra cầu sau giảm đi, còn phần trọng lượng phân ra cầu trước sẽ tăng lên. Để đánh giá sự phân bố tải trọng người ta ra đưa khái niệm hệ số phân bố tải trọng và được đặc trưng bởi tỉ số : Z1 n1 =  G  (7.6) Z n = 2  2 G Trong đó: Z1, Z2 - Phản lực thẳng đứng từ đường tác dụng lên các bánh xe. n1, n2 - Hệ số phân bố tải trọng lên các bánh xe cầu trước và cầu sau. G - Trọng lượng tồn bộ của ô tô. Hệ số phân bố tải trọng được xác định ứng với từng trường hợp cụ thể sau: 7.1.1.5.1. Xe đứng yên trên đường nằm ngang, không kéo rơmóc: 109
  16. Thay các giá trị của Z1 và Z2 ở (7.5) vào (7.6) ta được: Z1t Gb b n1t = = =  G GL L (7.7)  Z Ga a n = 2t = =  2t G GL L Trong đó : n1t , n2t - Hệ số phân bố tải trọng tĩnh lên các bánh xe cầu trước và cầu sau. 7.1.1.5.2. Xe chuyển động ổn định trên đường nằm ngang, không kéo rơmóc: Thay các giá trị Z1 và Z2 ở biểu thức (7.3) vào (7.6) ta được: Z1k Gb Gfrb Fhg Gfrb Fhg n1k n1t G GL GL GL (7.8) Z2k Ga Gfrb F h g Gfr b F  h g n n t 2kG GL GL 2 GL Trong đó : n1k , n2k - Hệ số phân bố tải trọng lên các bánh xe trước và sau khi xe chuyển động tịnh tiến. 7.1.1.5.3. Xe đang phanh trên đường nằm ngang không kéo rơmóc: Thay các giá trị Z1p và Z2p ở biểu thức (7.4) vào (7.6) ta được: ZGb Fh Fh n 1p j g n j g 1pG GL GL 1t GL (7.9) ZGa Fh Fh n 2p j g n j g 2pG GL GL 2t GL Trong đó : n1p , n2p - Hệ số phân bố tải trọng ra cầu trước và cầu sau khi phanh xe. Fj - Lực quán tính của ô tô khi phanh. Qua các trường hợp nghiên cứu trên ta có nhận xét sau: - Sự phân bố tải trọng lên các bánh xe phụ thuộc vào tọa độ trọng tâm của xe. - Tọa độ trọng tâm của xe ảnh hưởng tới chất lượng bám của bánh xe với mặt đường, cũng như tính ổn định và tính dẫn hướng của xe. - Khi phanh ô tô, lực quán tính hướng về phía trước nên phản lực tác dụng lên cầu trước lớn hơn cầu sau . - Đối với ô tô du lịch, thông thường : Z1 = Z2 = 0,5G. 110
  17. - Đối với xe tải, thông thường : Z2 = (0,7  0,75)G. 7.1.1.6. Hệ số thay đổi tải trọng lên các bánh xe của ô tô: Khi xe chuyển động, do trạng thái và điều kiện chuyển động luôn thay đổi, bởi vậy tải trọng tác dụng lên các bánh xe ở cầu trước và cầu sau cũng luôn thay đổi so với xe đứng yên trên đường nằm ngang. Để thấy được tải trọng động thay đổi tăng hay giảm so với tải trọng tĩnh, chúng ta sẽ đưa ra khái niệm: Hệ số thay đổi tải trọng ( hoặc là: hệ số thay đổi phản lực) lên các bánh xe và được tính như sau: m1 = Z1đ / Z1t (7.10) m2 = Z2đ / Z2t (7.11) Ở đây: m1, m2 – Hệ số thay đổi tải trọng lên các bánh xe ở cầu trước và cầu sau. Z1đ, Z2đ – Tải trọng động tác dụng lên các bánh xe ở cầu trước và cầu sau. Z1t, Z2t – Tải trọng tĩnh tác dụng lên các bánh xe ở cầu trước và cầu sau. Khi xe tăng tốc ( hoặc lên dốc, hoặc chuyển động ngược chiều gió) thì m1 1 và sẽ được kí hiệu là m1k, m2k . Khi xe đang phanh (hoặc xuống dốc, hoặc chuyển động thuận chiều gió) thì m1 > 1, m2 < 1 và sẽ được ký hiệu là m1p , m2p . Các hệ số m1, m2 được sử dụng thường xuyên khi tính tốn các hệ thống phanh, treo, lái và các cầu xe. 7.1.2. Xác định phản lực thẳng góc của đường tác dụng lên các bánh xe ô tô trong mặt phẳng ngang: 7.1.2.1. Trường hợp chuyển động tổng quát: Xe chuyển động quay vòng trên đường nghiêng ngang: R Y Mjn Flsin ô t hg ô T Fl a ủ Flcos Gcos Gsin ng c ò Z” G B Fmsin Fm Y” D c quay v Fmcos ụ c/2 Z’ Tr A h c c/2 Y’ m Y  111
  18. Hình 7.5: Sơ đồ lực và mômen tác dụng lên ô tô khi quay vòng trên đường nghiêng ngang. Trong trường hợp này ta giả thuyết rằng vết của bánh xe trước và sau trùng nhau, trọng tâm của xe nằm trong mặt phẳng đối xứng dọc, lực và mômen tác dụng lên ô tô gồm: G – Trọng lượng tồn bộ của ô tô và được phân ra các thành phần theo góc nghiêng ngang β . M jn – Mômen của các lực quán tính tiếp tuyến của các phần quay của động cơ và hệ thống truyền lực tác dụng trong mặt phẳng ngang khi xe chuyển động không ổn định. Fm – Lực kéo ở móc kéo ( phương của lực Fm trùng với phương nằm ngang của mặt đường). Fl – Lực ly tâm Gv2 Ở đây: F 1 gR v – Vận tốc chuyển động của xe. R – Bán kính quay vòng của ô tô. g – Gia tốc trọng trường. Z’1, Z”1 và Z’2, Z”2 – Các phản lực thẳng góc của đường tác dụng lên bánh xe bên phải và bên trái ở cầu trước và cầu sau. Y’1, Y”1 và Y’2 và Y”2 – Các phản lực ngang từ đường tác dụng lên bánh xe bên phải và bên trái ở cầu trước và cầu sau. c – Chiều rộng cơ sở của ô tô. YY – Trục quay vòng của ô tô. β – Góc nghiêng ngang của đường. Để xác định trị số các phản lực bên trái, ta lập phương trình cân bằng mômen đối với đường thẳng đi qua hai điểm tiếp xúc ( hai điểm A – hình 7.5 ) của các bánh xe bên phải với mặt đường, ta được: Z” = Z”1 + Z”2 = 1 c c c = G( cos h sin) F (h cos sin) M F (h cos sin) (7.12) c 2 g m m 2 jn 1 g 2 Tương tự, ta lập phương trình cân bằng mômen đối với đường thẳng đi qua hai điểm tiếp xúc ( hai điểm B ) của các bánh xe bên trái với mặt đường, ta xác định được trị số các phản lực bên phải: Z’ = Z’1 + Z’2 = 1 c c c = G( cos h sin) F (h cos sin) M F (h cos sin) (7.13) c 2 g m m 2 jn 1 g 2 112
  19. Muốn xác định phản lực ngang Y1, ta cũng lập phương trình mômen đối với đường thẳng đi qua hai điểm tiếp xúc ( hai điểm O2 – hình 7.1 ) của các bánh xe sau với mặt đường, ta được: Gbsin F1bcos Fmlm cos Y1 = Y’1 + Y”1 = (7.14) L Tương tự như trên, ta lập phương trình mômen đối với đường thẳng đi qua hai điểm tiếp xúc ( hai điểm O1 ) của các bánh xe trước với mặt đường để xác định phản lực ngang Y2: Ga sin  F1a cos Fm (lm L)cos Y2 = Y’2 + Y”2 = (7.15) L Trong đó: Y1 – Phản lực ngang của đường tác dụng lên các bánh xe trước. Y2 – Phản lực ngang của đường tác dụng lên các bánh xe sau. lm – Khoảng cách từ điểm đặt lực kéo móc đến điểm O2 (xem hình 7.1). 7.1.2.2. Trường hợp xe đứng yên trên dốc nghiêng ngang, không kéo rơmóc: Trong trường hợp này thì lực ly tâm Fl = 0 và lực kéo móc Fm = 0. Rút gọn biểu thức (7.12) và (7.13) ta xác định được các phản lực thẳng góc của đường tác dụng lên các bánh xe bên trái và bên phải như sau: β h sinβ) G c Z” = ( cos - g c 2  β + h sinβ)  (7.16) G c Z’ = ( cos  c 2 g Từ các biểu thức tính tốn trên, ta có nhận xét sau: - Trị số của các phản lực thẳng góc cũng như các phản lực ngang từ đường tác dụng lên các bánh xe phụ thuộc vào trị số, điểm đặt và chiều tác dụng của các ngoại lực tác dụng trong mặt phẳng của ô tô. - Các phản lực này ảnh hưởng đến tính ổn định và tính năng dẫn hướng của ô tô. 7.2. TÍNH ỔN ĐỊNH CỦA Ô TÔ : Tính ổn định của ô tô là khả năng đảm bảo giữ cho quỹ đạo chuyển động theo yêu cầu trong mọi điều kiện chuyển động khác nhau. Tuỳ thuộc điều kiện sử dụng, ô tô có thể đứng yên, chuyển động trên đường dốc ( đường có góc nghiêng dọc hoặc nghiêng ngang) có thể phanh hoặc quay vòng ở các loại đường khác nhau ( đường xấu, đường tốt ). Trong những điều kiện phức tạp như vậy, ô tô phải giữ được quỹ đạo của nó sao cho không bị lật đổ, không bị trượt hoặc thùng xe không bị nghiêng, cầu xe bị quay lệch trong giới hạn cho phép để đảm bảo chúng chuyển động an tồn, nâng cao vận tốc chuyển động của xe có nghĩa là tăng tính kinh tế và tính ổn định của ô tô trong mọi điều kiện làm việc. Trong phần này, chúng ta nghiên cứu tính ổn định của ô tô để đảm bảo khả năng không bị lật đổ hoặc bị trượt trong những điều kiện chuyển động khác nhau. 113
  20. 7.2.1. Tính ổn định dọc của ô tô: 7.2.1.1 Tính ổn định dọc tĩnh: Tính ổn định dọc tĩnh của ô tô là khả năng đảm bảo cho xe không bị lật đổ hoặc bị trượt khi đứng yên trên đường dốc dọc. F Z TGsin Gsin T Z p 2 Gcos 1 Gcos O O2 ' 1 αt G t G Mf a b Mf Fp b L L a Z2 Z1 O1 O2 ' t αt a) b) Hình 7.6: Sơ đồ lực và mômen tác dụng lên ô tô khi đứng yên. a- Ô tô đứng quay đầu trên dốc. b- Ô tô đứng quay đầu xuống dốc. *Xét ổn định theo điều kiện lật đổ : + Xe đậu trên dốc đầu hướng lên (hình 7.6a): - Xu hướng lật đổ: Xe có xu hướng lật quanh trục nằm trong mặt phẳng của đường và đi qua điểm tiếp xúc của hai bánh xe cầu sau với mặt đường (điểm O2 ) theo phương dọc. - Trạng thái giới hạn lật đổ: Khi góc α tăng dần đến góc αt (góc giới hạn mà xe bị lật khi đứng quay đầu lên dốc) thì các bánh xe cầu trước nhấc khỏi mặt đường: Z1 = 0 Ta lập phương trình mômen đối với điểm O2 : α Gbcosα = 0 M = Gh sin -  iO2 g t t α = b tg t (7.17) hg + Tương tự khi ô tô quay đầu xuống dốc (hình 7.6b), thì xe có xu hướng lật quanh trục nằm trong mặt phẳng của đường và đi qua điểm tiếp xúc của hai bánh xe cầu trước với mặt ' đường (điểm O1) , khi góc α tăng dần đến góc α t (góc giới hạn mà xe bị lật khi đứng quay đầu xuống dốc) thì các bánh xe cầu sau nhấc khỏi mặt đường: Z2 = 0 , lấy mômen đối với điểm O1 và rút gọn thì ta được : 114
  21. α = ' a tg t (7.18) hg * Chú ý : Trong các phương trình trên đã bỏ qua mômen cản lăn nhằm tăng tính ổn định tĩnh của ô tô. * Nhận xét : Góc dốc giới hạn lật đổ tĩnh chỉ phụ thuộc vào tọa độ trọng tâm của xe. Một số góc dốc giới hạn ở một số loại ô tô khi đứng trên dốc: + Đối với xe du lịch: α = α' = 60 o . t t ÷40) , α 60 + Xe tải khi đầy tải: α = (35 o ' o . t÷35) t , α > 60 o ' o + Xe tự đổ khi không tải: αt = (20 t *Xét ổn định theo điều kiện trượt: Sự mất ổn định dọc tĩnh của ô tô không chỉ do sự lật đổ dọc mà còn do trượt trên dốc do không đủ lực phanh hoặc do lực bám không tốt giữa các bánh xe và mặt đường. + Trường hợp thứ nhất: Nếu phanh tay là phanh hệ thống truyền lực và xe chỉ có cầu sau chủ động: Khi lực phanh đạt tới giới hạn bám, xe có thể bị trượt xuống dốc, góc dốc khi xe bị trượt được xác định như sau: Fpmax G sin Z 2 (7.19) Trong đó: Fpmax – Lực phanh lớn nhất đặt ở các bánh xe sau. φ – Hệ số bám dọc của bánh xe với đường. Z2 – Hợp lực của các phản lực thẳng góc từ đường tác dụng lên các bánh xe sau. φ Khi α tăng tới góc α t (góc dốc giới hạn mà ô tô bắt đầu bị trượt khi đứng quay đầu trên dốc ) thì lúc đó lực phanh đạt tới giới hạn bám. αφ + Gacosα tφ Z 2 L = 0  M = Gh sin - iO1 g t αφ + Gh g sinα tφ Gacos Z = t (7.20) 2 L Khi ô tô đứng trên dốc quay đầu lên, ta thay giá trị Z2 vào (7.19), ta được : αφ = φφh a tg t (7.21) L - g 115
  22. Khi ô tô đứng trên dốc quay đầu xuống, làm tương tự ta được: αφ = φφh ' a tg t (7.22) L + g Trong đó: φ tφ ' αt , α - Góc dốc giới hạn bị trượt khi xe đứng yên trên dốc quay đầu lên và xuống. + Trường hợp thứ hai: nếu phanh tay sử dụng chung cơ cấu phanh với phanh chân, lúc đó tất cả các bánh xe đều được phanh. Fpmax G cos (7.23) Tương tự ta có đαiềuφ =ki tgαện đ tφể =ô φtô trên dốc bị trượt như sau: ' tg t (7.24) Để đảm bảo an tồn khi ô tô đứng yên trên dốc thì hiện tượng trượt phải xảy ra trước khi lật đổ, được xác định bằng biểu thức: αφ < tgα t tg t φφh h b a - Nếu xe chỉ phanh ở cầu sau thì: <  L - g g  (7.25) b  - Nếu xe phanh ở tất cả các bánh xe thì : φ < hg * Nhận xét: Góc giới hạn khi ô tô đứng trên dốc bị trượt hoặc bị lật đổ chỉ phụ thuộc vào tọa độ trọng tâm của xe và chất lượng mặt đường. 7.2.1.2. Tính ổn định dọc động: Khi ô tô chuyển động trên đường dốc có thể bị mất ổn định (lật đổ hoặc trượt) dưới tác dụng của các lực và mômen hoặc bị lật đổ khi ô tô chuyển động ở tốc độ cao trên đường bằng. 7.2.1.2.1 Trường hợp chuyển động tổng quát: Xét ô tô chuyển động lên dốc không ổn định có kéo rơmóc (sơ đồ mômen và lực như ở hình 7.1) Khi tăng góc dốc α đến giá trị giới hạn thì xe sẽ lật đổ ứng với Z1= 0, các bánh xe trước bị nhấc khỏi mặt đường. Làm tương tự như phần ổn định dọc tĩnh, ta xác định được góc dốc giới hạn mà xe bị lật đổ khi chuyển động lên dốc hoặc xuống dốc. Để đơn giản, ta xét trường hợp ô tô chuyển động ổn định lên dốc, không kéo rơmóc nghĩa là: Fj = 0, Fm = 0. Vì α nhỏ nên ta có thể coi cos α = 1 Sau khi rút gọn biểu thức (7.1) ta được góc dốc giới hạn khi xe bị lật đổ là: 116
  23. b frb F tg α đ= (7.26) hg G 7.2.1.2.2. Trường hợp xe chuyển động lên dốc với vận tốc nhỏ, không kéo rơmóc và chuyển động ổn định: Ở trường hợp này ta có: Fj = 0 , Fm = 0, F 0 , Ff 0 (lực cản lăn nhỏ có thể bỏ qua). *Xét ổn định theo điều kiện lật đổ: Ô tô có xu hướng lật đổ quanh trục qua điểm tiếp xúc của hai bánh xe ở cầu sau với mặt đường. Thế các giá trị trên vào (7.1) và làm tương tự như ở trường hợp ổn định dọc tĩnh ta xác định được góc dốc giới hạn mà xe bị lật đổ khi xe chuyển động lên dốc: b tg α đ = (7.27) hg Khi xe chuyển động xuống dốc ta cũng xác định được góc dốc giới hạn mà xe bị lật đổ là: a tg α' đ = (7.28) hg *Xét ổn định theo điều kiện trượt: Khi lực kéo chủ động đạt tới giới hạn bám thì xe bắt đầu trượt( xét trường hợp chỉ có cầu sau chủ động): Fk max F Z2 Gsin (7.29) Mặt khác ta có: φG F = φ Z2 = (acos αφ đ + hgsin αφ đ) (7.30) L Với Z2 được xác định bằng cách lấy mômen đối với điểm O1. Từ (7.29) và (7.30) : Ta xác định đượφhc góc dốc giới hạn mà xe bị trượt: φa tg αφ đ = (7.31) L - g Trong đó : Fkmax – Lực kéo tiếp tuyến lớn nhất ở bánh xe chủ động. F – Lực bám của bánh xe chủ động. φ – Hệ số bám dọc của bánh xe với mặt đường. Điều kiện để đảm bảo cho ô tô trượt trước khi bị lật đổ là : tg αφ đ < tg α đ 7.2.1.2.3. Trường hợp xe kéo rơmóc chuyển động lên dốc với vận tốc nhỏ và ổn định: Ở trường hợp này ta có: Fj = 0, F 0 , Ff 0 , cos α 1. *Xét ổn định theo điều kiện lật đổ: 117
  24. Xe có xu hướng lật đổ quanh trục qua điểm tiếp xúc của hai bánh xe cầu sau với mặt đường (điểm O2). Khi tăng góc dốc α đến giá trị giới hạn thì bánh xe cầu trước nhấc khỏi mặt đường: Z1 = 0 Thế các giá trị trên vào (7.1) ta được: b Fmhm tg α đ = (7.32) hg Ghg Trong đó : Fm – Lực kéo rơmóc. hm – Chiều cao từ điểm đặt móc kéo đến mặt đường. * Xét ổn định theo điều kiện trượt: Xe có xu hướng trượt từ trên dốc xuống dưới dốc. Khi lực kéo tiếp tuyến đạt tới giá trị giới hạn bám thì ô tô trượt dọc. Fk max F Z2 (7.33) Mặt khác ta có : (7.34) Fk G sin Fm (G G m )sin Với: Fm = Gm sin α Thế các giá trị Fm = 0, Ff 0 vào (7.2) và kết hợp với (7.33),(7.34) ta được: αφ = (Gsinα φ hg + Gcosα φ a + G m h m sinα φ ) φ (G + G)sin m L α = φh ) + Gφ (L φh ) Ga tg φ (7.35) G(L g m m 7.2.1.2.4. Trường hợp xe chuyển động ổn định với vận tốc cao trên đường nằm ngang không kéo rơmóc: Trong trường hợp này (thường là ô tô du lịch) ta có: Fj = 0 , Fm = 0 , α = 0, bỏ qua ảnh hưởng của lực cản lăn. Sơ đồ mômen và lực tác dụng lên ô tô như hình 7.2 Khi đó xe có khả năng bị lật do lực cản không khí gây ra nếu chuyển động với tốc độ rất lớn. Lực cản không khí tăng tới giá trị giới hạn, xe sẽ bị lật quanh điểm O2 ( O2 là giao điểm của mặt phẳng qua trục bánh xe sau với đường), lúc đó phản lực Z1 = 0. Để xác định vận tốc giới hạn mà xe bị lật đổ, ta sử dụng công thức (7.3): G(b fr ) F h Z b  g 1 L 2 Ta coi Mf 0 vì trị số của nó rất nhỏ so với F , thay giá trị F Wv0 và rút gọn ta được vận tốc nguy hiểm mà xe bị lật đổ: 118
  25. Gb vn = (7.36) Whg Trong đó: vn – Vận tốc giới hạn mà xe bị lật đổ (m/s). 2 2 W – Nhân tố cản không khí: W = 0,625CxS có đơn vị là Ns /m , với Cx là hệ số cản không khí có đơn vị Ns2/m4 và S là diện tích cản không khí có đơn vị là m2. Để thuận tiện ta đổi sang đơn vị km/h: Gb vn =3,6 (7.37) Whg * Nhận xét: + Sự mất ổn định của xe phụ thuộc vào tọa độ trọng tâm của xe và móc kéo, nhân tố cản không khí, hệ số bám của xe với mặt đường + Đối với những xe thường chuyển động với vận tốc cao hoặc thường hoạt động trên những địa hình phức tạp nên hạ thấp trọng tâm để tăng tính ổn định cho ô tô. 7.2.2. Tính ổn định ngang của ô tô khi chuyển động thẳng trên đường nghiêng ngang: 7.2.2.1. Xét ổn định theo điều kiện lật đổ: Ôtô có xu hướng lật đổ quanh trục nằm trong mặt phẳng của đường và đi qua điểm tiếp xúc của hai bánh xe bên trái với mặt đường (điểm B) như hình 7.7. Lấy mômen đối với điểm B và βrút g Ghọn sinβta được M : c G cos g jn Z’= 2 (7.38) c Khi góc β tăng tới giá trị giới hạn β đ thì xe bị lật quanh trục đi qua B. Lúc đó Z’= 0. Thông thường giá trị Mjn nhỏ nên có thể coi Mjn 0 , xe không kéo rơmóc nên Fm = 0. Ta xác định được góc giới hạn lật đổ khi xe chuyển động trên đường nghiêng ngang là: c tgβ đ = (7.39) 2hg Trong đó : β đ - Góc dốc giới hạn mà xe bị lật đổ. 119
  26. Mjn T Gsin h Gcos G Z’ A Y’ Z” Y” B c/2 c/2 c  Hình 7.7: Sơ đồ lực và mômen tác dụng lên ô tô khi chuyển động thẳng trên đường nghiêng ngang. Trong đó: Y’ , Y” - Các phản lực ngang tác dụng lên các bánh xe bên phải và bên trái. β - Góc nghiêng ngang của đường. Z’ , Z” - Các phản lực thẳng góc từ đường tác dụng lên các bánh xe bên phải và bên trái. M jn - Mômen của các lực quán tính tiếp tuyến tác dụng trong mặt phẳng ngang khi ô tô chuyển động không ổn định. 7.2.2.2.Xét ổn định theo điều kiện trượt: Khi chất lượng bám của bánh xe với đường kém thì xe có xu hướng trượt khi chuyển động trên đường nghiêng ngang. Để xác định góc giới hạn khi xe bị trượt, ta lập phương trình hình chiếu các lực lên mặt phẳng song song với mặt đường : φ Gsinβφ = Y’ + Y” = φy (Z’+ Z”) = φy Gcosβ (7.40) Trong đó: βφ - Góc dốc giới hạn mà ô tô bị trượt. φy - Hệ số bám ngang giữa bánh xe và mặt đường. Rút gọn biểu thức (7.40) ta được: tgβφ = φy (7.41) Để đảm bảo an tồn thì xe phải bị trượt trước khi lật đổ, nghĩa là: c tgβφ < tgβ đ hay φy < (7.42) 2hg Khi ô tô đứng yên trên đường nghiêng ngang, ta cũng xác định được góc nghiêng giới hạn mà tại đó xe bị lật đổ hoặc bị trượt. 120
  27. Ở trường hợp này, ô tô chỉ chịu tác dụng của trọng lượng. Phương pháp xác định cũng tương tự như phần trên, ta có ngay góc giới hạn mà xe bị lật đổ: c tgβ t = (7.43) 2hg Cũng tương tự ta cóφ góc giới hạn mà xe bị trượt là: tgβ t = φy Điều kiện để xe trượt trước khi lật đổ là: φ c tgβ t < tgβ t hay φy < (7.44) 2hg 121
  28. CHƯƠNG 8 TÍNH NĂNG CƠ ĐỘNG CỦA Ô TÔ Mục tiêu: Sau khi học xong chương này các sinh viên có khả năng: 1. Định nghĩa được tính năng cơ động của ô tô. 2. Xác định được các thông số hình học ảnh hưởng đến tính năng cơ động của ô tô. 3. Giải thích được khả năng cơ động của ô tô có cầu trước chủ động. 4. Phân tích được ảnh hưởng của hiệu suất riêng của vi sai đến tính năng cơ động của ô tô. 5. Trình bày được hiện tượng lưu thông công suất ở ô tô có nhiều cầu chủ động. 123
  29. 8.1. CÁC THÔNG SỐ HÌNH HỌC ẢNH HƯỞNG ĐẾN TÍNH NĂNG CƠ ĐỘNG CỦA Ô TÔ: 8.1.1. Khái niệm về tính năng cơ động của ô tô: Tính năng cơ động của ô tô là khả năng chuyển động linh hoạt và khả năng thích ứng của chúng với những điều kiện đường xá khó khăn và địa hình phức tạp. Tính năng cơ động phụ thuộc chủ yếu vào các yếu tố sau: - Chất lượng kéo, bám ở các bánh xe. - Các thông số hình học của ô tô. Ngồi ra, những đặc điểm về cấu tạo của các cụm riêng biệt của ô tô và trình độ thành thạo của người lái cũng ảnh hưởng đến tính năng cơ động. 8.1.2. Các thông số hình học: 8.1.2.1. Khoảng sáng gầm xe: Đó là khoảng cách giữa điểm thấp nhất của gầm xe với mặt đường được ký hiệu là h. Khoảng cách này đặt trưng cho độ nhấp nhô lớn nhất của mặt đường mà xe có thể vượt qua được. Ở những ô tô có tính năng cơ động thấp h = 175÷210mm (đối với ô tô du lịch) và h = 240÷275 mm (đối với ô tô tải). Ở những ô tô có tính năng tính năng cơ động cao, khoảng sáng này thường lớn hơn so với ô tô có tính năng cơ động thấp từ 20÷50 mm. Ở những xe đặc biệt khoảng sáng gầm xe này có thể đạt tới 400 mm hoặc cao hơn.  h 1 2 Hìn h 8.1: Các thông số hình học về tính năng cơ động của ô tô 8.1.2.2. Bán kính cơ động dọc và cơ động ngang: Hai thông số này đặt trưng cho hình dạng của chướng ngại vật mà xe có thể khắc phục được. 124
  30. - Bán kính cơ động dọc 1 là bán kính lớn nhất của mặt trụ tiếp tuyến với các bánh xe trước và bánh xe sau và đi qua điểm thấp nhất của gầm xe trong mặt phẳng dọc. - Bán kính cơ động ngang 2 là bán kính lớn nhất của mặt trụ tiếp xúc với mặt trong của lốp xe bên phải và lốp xe bên trái và đi qua điểm thấp nhất của gầm xe trong mặt phẳng ngang. Bán kính cơ động dọc 1 và bán kính cơ động ngang 2 càng nhỏ thì tính năng cơ động của xe càng tốt. Ở những ô tô có công thức bánh xe 4x2, bán kính cơ động dọc thường nằm trong giới hạn sau: - Ô tô du lịch: loại nhỏ từ 2,5 đến 3,5 m, loại trung bình từ 3,0 đến 5,5 m và loại lớn từ 5,5 đến 8,5 m. - Ô tô tải: tải trọng nhỏ 1 từ 2,5÷3,5 m; tải trọng trung bình từ 3,0÷5,5 m; tải trọng lớn từ 5,0÷6,0 m. Ở những ô tô có tính năng cơ động cao, bán kính cơ động dọc nhỏ hơn so với loại ô tô tương tự nhưng có tính năng cơ động thấp, trong đa số các trường hợp bán kính này không vượt quá trị 1 từ 2,0÷3,6 m. 8.1.2.3. Góc cơ động trước và góc cơ động sau: Khi ô tô cần phải vượt qua những chướng ngại vật lớn như các đường hào, gò đống, cầu phà thì những phần nhô ra phía sau và phía trước của xe có thể va quẹt vào các vật cản. Tính năng cơ động của ô tô để vượt qua những chướng ngại này phụ thuộc vào trị số của các góc cơ động trước và góc cơ động sau. - Góc cơ động trước ( ) là góc nhỏ nhất tạo bởi mặt đường với mặt phẳng tiếp tuyến của bánh xe trước và đi qua điểm nhô ra nào đấy của đường bao phía trước của ô tô. - Góc cơ động sau (β ) là góc nhỏ nhất tạo bởi mặt đường với mặt phẳng tiếp tuyến của bánh xe sau và đi qua điểm nhô ra nào đấy của đường bao phía sau ô tô. Để nâng cao tính năng cơ động của xe người ta mong muốn làm thế nào đấy để các góc này có giá trị lớn theo khả năng có thể. Ở những ô tô hiện nay, các góc cơ động ,β có những giá trị sau: β - Ô tô du lịch có tính năng cơ động thấp : 20÷30o 15÷20o - Ô tô tải có tính năng cơ động thấp: 40÷50o 20÷40o - Ô tô có tính năng cơ động cao không nhỏ hơn: 45÷50o 35÷40o 8.2. KHẢ NĂNG CƠ ĐỘNG CỦA XE CÓ CẦU TRƯỚC CHỦ ĐỘNG: Các bánh xe bị động ở phía trước khắc phục những chướng ngại vật thẳng đứng kém hơn nhiều so với các bánh chủ động. Điều này được giải thích là các bánh xe bị động tỳ vào chướng ngại vật còn các bánh chủ động có xu hướng tự lăn và leo qua nó nhờ lực Fk. + Sơ đồ các lực tác dụng lên bánh xe bị động phía trước khi khắc phục chướng ngại vật thẳng đứng có độ cao h được biểu diễn ở hình 8.2.a, trường hợp này cầu sau là cầu chủ động. 125
  31. Gb Gb Mk Fk Fk” O T O T Z R Z R  A  A C r C h X Fk’ X a) b) Hình 8.2: Sơ đồ lực tác dụng lên các bánh xe ở cầu trước khi khắc phục chướng ngại vật thẳng đứng. a – Bánh bị động b – Bánh chủ động Các lực tác dụng lên bánh xe bị động gồm có: T- Lực đẩy từ khung tới bánh xe. R- Phản lực của chướng ngại. Z và X - Thành phần thẳng đứng và nằm ngang của phản lực R. Từ điều kiện cân bằng của bánh xe ta có: Z = Gb ; X = T Theo sơ đồ lực trên hình 8.2 ta có: α = Ttgα Z = Xtg 1α T = 1 α G G = Ttg b b 1 tg α 1 Giá trị tg 1 được xác định từ tam giác AOC: α = = = OC r h r h tg 1 CA r2 (r h) 2 2hr h 2 α r h 2 Gb 2rh - h Nên : T = = Gb (8.1) tg 1 - Từ công thức trên chúng ta thấy rằng khi h = r thì T ∞, có nghĩa là khi gặp chướng ngại vật có độ cao h = r thì ô tô không thể vượt được, ngay cả khi các bánh xe chủ động ở cầu sau có lực kéo cực đại. Ở đây chúng ta đã bỏ qua các yếu tố ảnh hưởng và giả thuyết rằng: - Bánh xe không bị biến dạng. - Mặt đường chướng ngại vật không bị biến dạng. - Bánh xe không bị trượt. 126
  32. + Khi các bánh xe trước là các bánh xe chủ động và cầu sau là cầu bị động, ngồi lực T và Gb trên bánh xe còn có mômen Mk, do đó xuất hiện lực kéo Fk (hình 8.2.b). Từ Fk ta phân tích thành Fk’ và Fk”. Phản lực R từ chướng ngại vật được phân tích thành hai thành phần: X và Z. Khi chiếu tất cả các lực lên trục nằm ngang và thẳng đứng thì ta nhận được: T = Fk’ - X Gb = Z + Fk” Do nảy sinh lực Fk” nên cho phép bánh xe chủ động dễ dàng khắc phục được những chướng ngại vật có độ cao bằng bán kính của bánh xe, còn lực Fk’ sẽ khắc phục lực cản chuyển động X và lực tác dụng từ khung lên bánh xe T. 8.3. ẢNH HƯỞNG CỦA HIỆU SUẤT RIÊNG CỦA VI SAI TỚI TÍNH NĂNG CƠ ĐỘNG CỦA XE: Vi sai đặt ở cầu chủ động cho phép các bánh xe chủ động quay với những vận tốc góc khác nhau, đồng thời nó phân bố mômen xoắn cho hai bán trục theo một tỉ lệ nhất định. Tỉ lệ này phụ thuộc vào hiệu suất riêng của vi sai. Bởi vậy, hiệu suất riêng của vi sai sẽ ảnh hưởng trực tiếp đến tính năng cơ động của ô tô. Trước hết chúng ta quy ước ký hiệu như sau: bán trục e là bán trục quay nhanh, tức là bán trục dẫn đến bánh xe trượt quay nhiều hơn hoặc chuyển động nhanh hơn khi quay vòng, bán trục i là bán trục quay chậm, tức là bán trục dẫn đến bánh xe trượt quay ít hơn hoặc chuyển động chậm hơn khi quay vòng. Ở phần động học của vi sai, chúng ta đã chứng minh cho vi sai đối xứng là: ne + ni = 2nv Trong đó: ne – Số vòng quay của bán trục ( hoặc bánh xe ) quay nhanh. ni – Số vòng quay của bán trục ( hoặc bánh xe ) quay chậm. nv – Số vòng quay của vỏ vi sai. Vì vi sai là cơ cấu có ít nhất hai bậc tự do nên từ biểu thức trên ta suy ra: Nếu ni = 0 thì ne = 2nv , tức là nếu một bán trục ( hoặc một bánh xe ) đứng yên thì bán trục ( hoặc bánh xe ) còn lại sẽ quay với số vòng quay gấp đôi số vòng quay của vỏ vi sai. Nếu nv = 0 thì ne = -ni , tức là nếu vỏ vi sai bị hãm lại ( cố định ) thì hai bán trục quay ngược chiều nhau. Bởi vậy: v v v ni ne iie = i ei = i = = = - 1 (8.2) ne n i v v v ηie = η ei = η (8.3) η = i η Me v v v v = iie ie (8.4) Mi Ở đây: v v iie ; iei – Tỷ số truyền từ trục i đến trục e và ngược lại khi vỏ vi sai cố định. v v ηie ; ηei – Hiệu suất truyền động từ trục i đến trục e và ngược lại khi vỏ vi sai cố định. ηv – Hiệu suất riêng của vi sai. Me; Mi – Mômen xoắn truyền đến trục e và trục i. 127
  33. Mv – Mômen xoắn truyền đến vỏ vi sai. v Hiện nay, vi sai đặt ở cầηu chủ động là vi sai đối xứng, cho nên i = -1 , suy ra: M e = v (8.5) Mi Nếu vi sai không có ma sát khi hoạt động thì ηv = 1 cho nên mômen xoắn phân bố cho hai bán trục luôn bằng nhau. Me = Mi (8.6) Trong thực tế, khi vi sai hoạt động thì luôn tồn tại ma sát giữa các chi tiết của nó, nên ηv 1. Bởi vậy, mômen xoắn phân bố cho hai bán trục sẽ không bằng nhau. η 1 M M Me v = e i (8.7) Mi Như vậy, do ma sát bên trong vi sai nên tỷ số mômen giữa bán trục e và i luôn bằng hiệu suất riêng của vi sai. Nếu ma sát càng lớn, hiệu suất riêng càng nhỏ thì chênh lệch giữa giá trị mômen Me và Mi càng lớn. Khi xe đi vào trong đường đất xấu, hệ số bám dưới các bánh xe sẽ khác nhau khá nhiều, nếu ηv = 1 thì mômen sẽ phân bố đều cho hai bán trục. Điều này sẽ làm xấu đi tính năng cơ động của xe. Bởi vì, mômen truyền đến bánh xe có hệ số bám nhỏ với mặt đường có khả năng lớn hơn mômen bám, làm cho bánh xe này quay trơn và mômen xoắn chủ động của cầu không đủ để khắc phục mômen cản. Theo quan điểm về tính năng cơ động của ô tô thì ma sát trong vi sai là có lợi. Bởi vì v khi có ma sát thì η 1 và Me M i , tức là vi sai cho phép truyền mômen xoắn lớn cho bánh xe không bị trượt ( bánh xe quay chậm) và truyền mômen xoắn nhỏ cho bánh xe bị trượt (bánh xe quay nhanh ). Cho nên mômen xoắn chủ động của cầu sẽ tăng lên ( so với trường hợp ηv = 1) và có thể khắc phục được mômen cản. Khi mômen xoắn chủ động tăng lên thì lực kéo ở các bánh xe chủ động cũng tăng lên. Thực tế cho thấy, ở vi sai có hiệu suất riêng lớn ( ma sát trong nhỏ ) thì lực kéo tổng cộng chỉ tăng khoảng 4  6%. Ở vi sai cam và vi sai trục vít có hiệu suất riêng nhỏ ( ma sát trong lớn ) thì lực kéo tổng cộng có thể tăng 10  15%. 8.4. HIỆN TƯỢNG LƯU THÔNG CÔNG SUẤT Ở XE CÓ NHIỀU CẦU CHỦ ĐỘNG: Trong số những biện pháp khác nhau được sử dụng để nâng cao chất lượng kéo – bám của ô tô, thì đối với những ô tô cần tính năng cơ động cao, người ta thường sử dụng biện pháp tăng số cầu chủ động. Với cách bố trí này, chất lượng kéo – bám của ô tô sẽ tăng rất nhiều nhờ việc tận dụng tới mức tối đa trọng lượng sử dụng của xe để biến thành trọng lượng bám. Để đơn giản cho việc nghiên cứu, ta xét loại xe bố trí theo sơ đồ 4x4 (bốn bánh xe đều là bánh xe chủ động). Động lực học kéo của xe có bốn bánh chủ động như trên phụ thuộc vào sơ đồ dẫn động đến các trục chủ động, bởi vì cấu trúc dẫn động có ảnh hưởng tới việc phân bố lực kéo giữa các bánh xe trước và sau. Hiện nay, người ta hay sử dụng hai loại dẫn động: dẫn động cứng và dẫn động vi sai (hình 8.3). 128
  34. Loại dẫn động cứng được biểu thị trên sơ đồ hình 8.3a. Cả hai trục của ô tô (trục trước và trục sau) được nối động học cứng với nhau qua hộp phân phối 1, do đó mối quan hệ đã được xác định giữa vận tốc góc của chúng là không đổi trong quá trình làm việc. Loại dẫn động vi sai được biểu thị trên sơ đồ hình 8.3b . Trong hộp phân phối có vi sai 2, do kết quả tác động của hiệu ứng vi sai nên mối quan hệ giữa vận tốc góc của hai trục có thể thay đổi trong quá trình làm việc. Đặc tính khác nhau về mối quan hệ động học giữa các trục cũng gây nên sự khác nhau trong việc phân bố mômen chủ động cho chúng. Ở những ô tô có dẫn động cứng của hai trục chủ động thì luôn có sự không tương ứng động học giữa các bánh xe trước và sau. Khi chuyển động trên mặt đường bằng phẳng, sự không tương ứng động học được biểu thị ở chỗ: tốc độ vòng lý thuyết của các bánh xe trước và sau có thể khác nhau, trong khi các trục của chúng lại gắn chặt với khung xe và phải di chuyển với cùng một vận tốc tịnh tiến. Việc đảm bảo sự đồng bộ tuyệt đối vận tốc vòng của các bánh xe trước và sau thực tế là không thể thực hiện được, vì bán kính của các bánh xe có thể sai lệch so với tính tốn do nhiều nguyên nhân gây ra như: sai số chế tạo, độ mài mòn của lốp, áp suất không khí trong lốp, sự dao động của tải trọng thẳng đứng tác dụng lên các bánh xe 1 Hộp số a ) Hộp số 2 b) Hình 8.3: Sơ đồ dẫn động đến các trục chủ động. a- Dẫn động cứng (trong hộp phân phối không có vi sai) b- Dẫn động qua vi sai (trong hộp phân phối có vi sai) Trên đường vòng, sự không tương ứng động học được tạo nên ở chỗ: khi ô tô chuyển động trên đường cong thì mỗi trục của chúng phải đi được những quãng đường khác nhau, 129
  35. nhưng hai trục của xe được xem như gắn với khung lại di chuyển với cùng một vận tốc tịnh tiến. Dưới đây chúng ta nghiên cứu trường hợp chuyển động thẳng của ô tô có kết cấu dẫn động cứng hai trục khi có sự sai khác về tốc độ vòng giữa các bánh xe trước và sau. Ở trường hợp này, sự cân bằng vận tốc tịnh tiến của hai trục chủ động chỉ có thể đạt được trong điều kiện có sự trượt quay hay trượt lết của các bánh xe, vì trượt quay làm giảm vận tốc tịnh tiến của trục các bánh xe, còn trượt lết làm tăng nó lên. Điều kiện cân bằng vận tốc tịnh tiến của hai trục chủ động được biểu thị bằng phương trình sau: δ') = v"(1 δ") v'(1 (8.8) Dấu ( ') ứng với trục đặt bánh xe có vận tốc vòng lý thuyết lớn và dấu (") ứng với trục đặt bánh xe có vận tốc vòng lý thuyết nhỏ. Chúng ta giả sử rằng các bánh xe của trục trước là bánh quay nhanh và các bánh xe của trục sau là bánh quay chậm. Trị số δ trong phương trình trên đặt trưng cho sự trượt quay và trượt lết của các bánh xe; trường hợp trượt quay nó lấy dấu dương và trường hợp trượt lết nó lấy dấu âm để đưa vào phương trình. Chúng ta gọi tỉ số v'/v"là hệ số không tương ứng động học của các bánh xe chủ động trước và sau, ký hiệu là k. Giữa sự trượt của các bánh xe chủ động quay nhanh và quay chậm có mối quan hệ xác định và tìm được từ phương trình (8.2) như sau: v' δ" = 1 (1 δ') = 1 k(1 δ') (8.9) v" Trị số δ' trong biểu thức (8.8) có giá trị dương, vì các bánh xe quay nhanh bao giờ cũng làm việc với mức độ trượt quay nào đó. Còn về phần bánh xe quay chậm, trị số trượt δ" có thể có giá trị âm, bằng không hoặc dương. Nếu δ" có giá trị âm thì các bánh xe quay chậm sẽ chuyển động với sự trượt lết; δ" = 0 chúng lăn không trượt quay và không trượt lết ; nếu δ" > 0 chúng làm việc với sự trượt quay, nhưng trị số trượt quay của chúng nhỏ hơn so với bánh xe quay nhanh. Chỉ tiêu kéo tốt nhất của ô tô chỉ có thểâ nhận được khi có sự cân bằng vận tốc vòng của các bánh trước và sau, nghĩa là ở điều kiện hệ số không tương ứng động học k = 1. Ở trường hợp này, các bánh trước và sau làm việc với cùng một độ trượt và chất lượng bám của chúng được sử dụng ở mức độ bằng nhau. Khi tồn tại sự không tương ứng động học của các bánh xe thì chỉ tiêu kéo của ô tô giảm nhiều. Nếu do hậu quả của việc mất tương ứng động học mà các bánh xe trước và sau bị trượt với mức độ khác nhau khi làm việc, thì chất lượng bám của các bánh xe quay chậm sẽ được sử dụng ở mức độ nhỏ hơn so với chất lượng bám của các bánh xe quay nhanh. Độ không tương ứng động học càng lớn thì chất lượng bám của các bánh xe trên hai trục càng mất đồng đều. Aûnh hưởng xấu nhất tới chỉ tiêu kéo của xe là khi các bánh xe quay chậm bị trượt lết. Ở trường hợp này, thực tế là xe chỉ còn lại hai bánh chủ động, vì các bánh xe bị trượt lết đã trở thành bánh bị động. Dưới đây chúng ta nghiên cứu sự chuyển động của ô tô 4x4 khi các bánh sau là các bánh quay nhanh, còn các bánh trước bị trượt lết (hình 8.4) v 130
  36. Fk’ Fk” Hình 8.4: Sơ đồ minh họa hiện tượng lưu thông công suất có hại. Ở trường hợp này, trên các bánh xe trước sẽ chịu tác dụng của lực kéo tiếp tuyến âm - Fk”, được tạo nên bởi phản lực của đất và có chiều ngược lại với chiều chuyển động của ô tô. Lực này tạo nên một mômen xoắn truyền tới các bánh xe sau qua hệ thống truyền lực. Như vậy, công suất truyền tới các bánh xe chủ động phía sau sẽ theo hai dòng: một từ động cơ theo chiều mũi tên mảnh và một từ các bánh trước theo chiều đường mũi tên chấm khuất. Cả hai dòng công suất này được truyền tới các bánh xe sau theo đường nét đậm và tạo nên lực kéo tiếp tuyến dương Fk’. Một phần lực kéo tiếp tuyến Fk’ được truyền qua khung xe tới các bánh quay chậm phía trước để khắc phục lực cản được tạo nên bởi lực -Fk”. Như vậy, công suất được tạo nên bởi phản lực -Fk” của đất ở các bánh xe bị trượt lết sẽ lưu thông theo vòng khép kín: từ bánh bị trượt lết qua hệ thống truyền lực tới các bánh chủ động, rồi lại từ các bánh chủ động qua khung của xe đi ngược trở lại các bánh bị trượt. Phần công suất lưu thông này là vô ích, thậm chí là có hại, vì vậy nó được gọi là công suất ký sinh. Nó không phải là nguồn năng lượng bổ sung cho ô tô mà chỉ gây thêm tải trọng phụ cho hệ thống truyền lực và làm tăng tổn thất cơ khí. Công suất ký sinh phát sinh rõ nét trong những trường hợp mà ở đó điều kiện làm việc không cho phép nhận được sự khác biệt cần thiết về trị số trượt của các bánh xe chủ động trước và sau đủ để bù đắp lại độ không tương ứng động học giữa chúng. Những trường hợp nói trên thường xảy ra khi chuyển động trên mặt đường cứng và chạy không tải. Trong những điều kiện này, việc sử dụng cầu chủ động thứ hai không những không có lợi mà còn có hại. Khi ô tô 4x4 làm việc trên đường đất mềm bở xốp hoặc ẩm ướt với tải trọng lớn, điều kiện để đạt được sự khác biệt cần thiết về trị số trượt của các bánh trước và sau là hồn tồn có thể đạt được và như vậy sẽ bù đắp cho độ không tương ứng về mặt động học giữa các bánh xe. Vì vậy, khi ô tô làm việc trên đường đất mềm với tải trọng đủ lớn thì công suất ký sinh thường không phát sinh khi chạy thẳng. Khi quay vòng, ở ô tô có các trục chủ động nối động học cứng với nhau người ta luôn quan sát thấy sự lưu thông của công suất ký sinh. Các bánh trước, mà chúng cần phải đi được quãng đường lớn hơn bánh xe sau, sẽ chuyển động với sự trượt lết và chúng chịu tác dụng của những lực kéo âm. Bán kính quay vòng càng nhỏ thì công suất ký sinh càng lớn. Hiện tượng lưu thông công suất có hại không những tồn tại ở ô tô có nhiều cầu chủ động và các trục của chúng được nối với nhau bằng hệ thống động học cứng (hộp phân phối), mà còn xuất hiện ngay trong cầu chủ động khi vi sai giữa các bánh xe bị gài cứng ở các trường hợp xe chuyển động trên mặt đường cứng và quay vòng. Để tránh hiện tượng lưu thông công suất ở các ô tô có tính năng cơ động cao, thì trong các điều kiện làm việc bình thường trên mặt đường tốt không nên sử dụng cùng một lúc nhiều cầu chủ động và gài cứng vi sai giữa các bánh xe. 131
  37. CHƯƠNG 9 PHANH Ô TÔ Mục tiêu : Sau khi học xong chương này các sinh viên có khả năng : 1. Nêu được lực phanh và mô men phanh cần thiết trên ô tô. 2. Xác định được lực phanh và các mômen tác dụng lên bánh xe khi phanh. 3. Xác định được lực phanh ô tô và điều kiện bảo đảm phanh tối ưu. 4. Tính tốn được phân bố lực phanh và mô men phanh. 5. Tính tốn được mômen phanh cần thiết tại các cơ cấu phanh. 6. Xác định được các chỉ tiêu đánh giá hiệu quả phanh. 7. Trình bày được ổn định của ô tô khi phanh. 8. Trình bày được về phanh chống hãm cứng ABS, khả năng nâng cao hiệu quả và ổn định của ô tô khi phanh. 133
  38. 9.1. LỰC PHANH VÀ MÔMEN PHANH CẦN THIẾT TRÊN Ô TÔ. 9.1.1. Lực phanh và các mômen tác dụng lên bánh xe khi phanh : Mjb  Mp Gb 0 v Fx rb Mf Fp Zb Hình 9.1: Sơ đồ lực và mômen tác dụng lên bánh xe khi phanh. Khi đạp phanh thì ở cơ cấu phanh tạo ra mômen ma sát còn gọi là mômen phanh Mp. Tại vùng tiếp xúc giữa bánh xe với đường xuất hiện lực phanh (Fp) ngược với chiều chuyển động của ô tô. Ta có: Mp Fp = (9.1) rb Với : Mp – Mômen phanh tác dụng lên bánh xe. Fp – Lực phanh tác dụng tại điểm tiếp xúc giữa bánh xe với mặt đường. rb – Bán kính tính tốn của bánh xe. Khi mômen phanh Mp tăng thì lực phanh Fp tăng, nhưng lực phanh không thể tăng một cách tùy ý. Bởi vì lực phanh lớn nhất bị giới hạn bởi điều kiện bám giữa bánh xe với mặt đường, nghĩa là: Fpmax = F = Zb. (9.2) 134
  39. Trong đó : F – Lực bám dọc giữa bánh xe với mặt đường. Zb – Phản lực pháp tuyến tác dụng lên bánh xe. – Hệ số bám dọc giữa bánh xe với mặt đường. Khi phanh, ngồi mômen phanh, còn có mômen quán tính Mjb và mômen cản lăn tác dụng lên bánh xe.Bởi vậy lực hãm tổng cộng tác dụng lên bánh xe sẽ là : MMMp f jb M f M jb Fh = = Fp + (9.3) rb rb Trong quá trình phanh, do Mp tăng dần nên Fp cũng tăng dần lên và đến một lúc nào đó Fp = Fpmax = F thì các bánh xe bị trượt lết. Khi bánh xe bị trượt lết hồn tồn thì hệ số bám giảm xuống giá trị min, cho nên lực phanh cũng giảm xuống giá trị nhỏ nhất, dẫn đến hiệu quả phanh thấp nhất. Ngồi ra, nếu các bánh xe trước bị trượt lết sẽ làm mất tính dẫn hướng khi phanh (xe không điều khiển được), còn nếu các bánh xe sau bị trượt lết sẽ làm mất tính ổn định khi phanh (các bánh xe dễ dàng bị trượt ngang khi có lực ngang nhỏ tác dụng lên xe). Từ biểu thức (9.2) ta thấy rằng để có Fp lớn thì cả hệ số bám và Zb đều phải có giá trị lớn. Cho nên để sử dụng hết tồn bộ trọng lượng bám của xe, chúng ta phải bố trí cơ cấu phanh ở tất cả các bánh xe. Khi phanh, động năng hoặc thế năng của xe bị tiêu hao cho ma sát giữa má phanh và trống phanh, giữa lốp và mặt đường cũng như để khắc phục các lực cản chuyển động. Nếu mômen phanh càng tăng thì cơ năng biến thành nhiệt năng giữa trống phanh và má phanh, giữa lốp và mặt đường càng tăng. Khi bánh xe bị hãm cứng hồn tồn thì công ma sát giữa trống phanh và má phanh cũng như sự cản lăn không có nữa, tất cả năng lượng hầu như biến thành nhiệt năng ở vùng tiếp xúc giữa lốp và mặt đường. Sự trượt lết sẽ làm giảm hiệu quả phanh,tăng độ mòn của lốp, tăng độ trượt dọc và ảnh hưởng xấu đến tính ổn định ngang của xe. 9.1.2. Lực phanh ô tô và điều kiện bảo đảm phanh tối ưu : 9.1.2.1. Lực phanh ô tô : 135
  40. L v a b F F j T hg G G1 G 2 Z1 Z2 F F p1 E Ff1 p2 F Ff 2 Hình 9.2: Các lực tác dụng lên ô tô khi phanh. Các lực tác dụng lên ôtô khi phanh : + Trọng lượng tồn bộ của ô tô G đặt tại trọng tâm. + Lực cản lăn ở các bánh xe trước và sau Ff1, Ff2. + Phản lực thẳng góc tác dụng lên các bánh xe trước và sau Z1, Z2. + Lực phanh ở các bánh xe trước và sau Fp1, Fp2. + Lực cản không khí F. + Lực quán tính Fj do khi phanh có gia tốc chậm dần. Lực quán tính Fj được xác định theo biểu thức sau : G Fj = jp (9.4) g Ở đây : g – Gia tốc trọng trường (g = 9,8 m/s2). jp – Gia tốc chậm dần khi phanh. Khi phanh thì lực cản không khí F và lực cản lăn Ff1 và Ff2 không đáng kể, có thể bỏ qua. Sự bỏ qua này chỉ gây sai số khoảng 1,5  2%. Bằng cách lập các phương trình cân bằng mômen của các lực tác dụng lên ô tô khi phanh đối với các điểm tiếp xúc giữa bánh xe với mặt đường tại E và F, ta có thể xác định các phản lực thẳng góc Z1 và Z2 tác dụng lên các bánh xe cầu trước và cầu sau : Gb Fjhg Z1 = = G1 (9.5) L 136
  41. Ga Fjhg Z2 = = G2 (9.6) L Trong đó : a, b, hg – Tọa độ trọng tâm của ô tô. L – Chiều dài cơ sở của ô tô. G1, G2 – Tải trọng tác dụng lên các bánh xe cầu trước và cầu sau khi phanh. Thay Fj ở công thức (9.4) vào Z1 và Z2, ta được : G jp h g Gb jp h g Z1 = (b ) = 1 = Z1t.m1p = G1t.m1p (9.7) L g L gb G jp h g Ga jp h g Z2 = (a ) = 1 = Z2t.m2p = G2t.m2p (9.8) L g L ga Với : Gb Ga Z1t = ; Z2t = L L jp h g jp h g m1p = 1 + ; m2p = 1 – gb ga Ở đây : Z1t, Z2t – Phản lực thẳng góc tác dụng lên các bánh xe cầu trước và cầu sau khi xe đứng yên trên mặt phẳng nằm ngang (phản lực tĩnh). m1p, m2p – Hệ số thay đổi tải trọng tác dụng lên các bánh xe cầu trước và cầu sau khi phanh. G1t, G2t – Tải trọng tĩnh tác dụng lên các bánh xe cầu trước và cầu sau. Các lực phanh sinh ra ở các bánh xe cầu trước và cầu sau sẽ là : G jp h g Fp1 = F 1 = Z1 = (b ) (9.9) L g G jp h g Fp2 = F 2 = Z2 = (a ) (9.10) L g Để sử dụng hết trọng lượng bám của ôtô thì cơ cấu phanh được bố trí ở các bánh xe trước và sau và lực phanh lớn nhất đối với tồn bộ xe là : Fpmax = G (9.11) 137
  42. 9.1.2.2. Điều kiện bảo đảm phanh tối ưu : Phanh tối ưu có nghĩa là quá trình phanh đạt hiệu quả cao nhất. Quá trình phanh có hiệu quả cao nhất thể hiện qua các chỉ tiêu : Sp = Spmin, tp = tpmin, jp = jpmax. Với Sp, tp, jp là quãng đường phanh, thời gian phanh và gia tốc phanh. Sự phanh có hiệu quả nhất là khi lực phanh sinh ra ở các bánh xe tỷ lệ thuận với tải trọng tác dụng lên chúng, mà tải trọng tác dụng lên các bánh xe trong quá trình phanh lại thay đổi do lực quán tính Fj tác dụng lên xe. Trong trường hợp phanh có hiệu quả nhất thì tỷ số giữa các lực phanh ở các bánh xe trước và sau là : F .Z Z Gb F h p1 = 1 = 1 = j g (9.12) Fp2 .Z 2 Z 2 Ga Fjh g Trong quá trình phanh thì lực cản lăn Ff1 và Ff2 không đáng kể, có thể bỏ qua, do đó có thể viết : Fj = Fp1 + Fp2 Và Fj max = Fpmax = G (9.13) Thay Fj max vào biểu thức (9.12), ta có : F b .h p1 = g (9.14) Fp2 a .h g Biểu thức (9.14) chính là điều kiện để đảm bảo sự phanh có hiệu quả nhất. Nghĩa là để đảm bảo phanh tối ưu thì khi phanh quan hệ giữa các lực phanh Fp1 và Fp2 phải luôn thỏa mãn biểu thức (9.14). Do trong quá trình phanh tọa độ trọng tâm (a, b, hg) và hệ số bám dọc luôn thay đổi cho Fp1 nên tỷ số luôn thay đổi. Muốn vậy phải thay đổi được mômen phanh Mp1, Mp2 sinh ra ở các Fp2 cơ cấu phanh đặt ở các bánh xe cầu trước và cầu sau. Để thay đổi Mpi thì phải thay đổi áp suất dầu hoặc khí nén dẫn đến các xy lanh ở các bánh xe (phanh dầu) hoặc dẫn đến các bầu phanh (phanh khí). Ở hệ thống phanh thường, sự thay đổi áp suất nói trên là không có, nên khi phanh gấp, sau một thời gian ngắn trong tổng thời gian phanh, thì G1 (hoặc Z1) tăng lên, G2 (hoặc Z2) giảm xuống, dẫn đến lực bám F 1 tăng, F 2 giảm, hậu quả là : Fp1 F 2, làm cho các bánh xe cầu sau bị hãm cứng và trược lết hồn tồn. Lúc này chỉ cần một lực ngang nhỏ tác dụng lên xe là cầu sau sẽ trượt ngang, làm cho độ ổn định của xe giảm nhanh, xe bị quay ngang và có khả năng bị lật đổ. Vì thế, để tránh xảy ra hiện tượng này, hiện nay trên nhiều xe đã bố trí bộ điều hòa lực phanh hoặc bộ chống hãm cứng bánh xe khi phanh. Các cơ cấu này sẽ tự động điều chỉnh lực phanh ở các bánh xe bằng cách thay đổi quan hệ áp suất dẫn động phanh đến các cơ cấu phanh ở cầu trước và cầu sau. 9.1.3. Phân bố lực phanh và mômen của ôtô khi phanh : 138
  43. Muốn quá trình phanh có hiệu quả nhất thì phân bố các lực phanh sinh ra ở các bánh xe trước Fp1 và ở các bánh xe sau Fp2 phải tuân theo biểu thức (9.14). Nếu coi bán kính của bánh xe trước là rb1 và bánh xe sau la ørb2 bằng nhau trong quá trình phanh ta có thể viết quan hệ giữa mômen phanh ở các bánh xe trước Mp1 và Mp2 như sau: M F .r F p2 = p2 b2 = p2 (9.15) Mp1 Fp1 .r b1 Fp1 Kết hợp các biểu thức (6.14) và (6.38) ta có quan hệ sau: M a .h p2 = g (9.16) Mp1 b .h g Trong đó: Mp1 – Mômen phanh sinh ra ở các bánh xe trước. Mp2 – Mômen phanh sinh ra ở các bánh xe sau. Như vậy muốn đảm bảo hiệu quả phanh tốt nhất thì mômen phanh sinh ra ở các bánh xe trước Mp1 và mômen phanh sinh ra ở bánh xe sau Mp2 phải tuân theo biểu thức (9.16). Mômen phanh sinh ra ở các bánh xe trước Mp1 và mômen phanh sinh ra ở các bánh xe sau Mp2 có thể xác định từ điều kiện bám theo biểu thức sau : G.rb . Mp1 = Z1 rb = (b + .hg) (9.17) L G.rb . Mp2 = Z2 rb = (a – .hg) (9.18) L Đối với ô tô đã chất tải nhất định, ta có a, b, hg cố định. Bằng cách thay đổi giá trị dựa trên biểu thức (9.17) và (9.18) ta có thể vẽ đồ thị Mp1=f1( ),Mp2 = f2( ) như sau: Trên hình 9.3 là đồ thị biểu diễn quan hệ giữa Mp1 và Mp2 với hệ số bám . Đường nét liền ứng với ô tô đầy tải, đường nét đứt ứng với ô tô không tải. Mp Mp1 Mp2 0 Hình 9.3: Đồ thị biểu diễn mối quan hệ giữa mômen phanh Mp1 và Mp2 với hệ số bám . 139
  44. Từ đồ thị 9.3 có thể vẽ đồ thị quan hệ giữa mômen phanh ở các bánh xe trước Mp1 và ở các bánh xe sau Mp2 . Đồ thị trình bày ở hình 9.4 được gọi là đặc tính phanh lý tưởng của ô tô. Bởi vì nếu quan hệ giữa Mp1 và Mp2 theo đúng đường cong 1 (khi đầy tải) hoặc theo đúng đường cong 2 (khi không tải) thì ở các bánh xe trước Mp1 M 1 và ở cầu sau Mp2 M 2 (với M 1, M 2 là mômen bám của các bánh xe cầu trước và cầu sau). Tức là mômen phanh ở các bánh xe đã lớn xấp xỉ bằng mômen bám tại mọi thời điểm trong suốt quá trình phanh. Cho nên quãng đường phanh sẽ ngắn nhất, các bánh xe không bị hãm cứng trong khi phanh và đảm bảo được ổn định của ô tô khi phanh. Hình 9.4: Đường đặc tính phanh lý tưởng của ô tô. Mp2 1 2 0 Mp1 1 1 - Đầy tải 2 - Không tải. Đối với ô tô hiện nay thường dùng dẫn động phanh thủy lực hoặc dẫn động phanh bằng khí nén, quan hệ giữa mômen phanh sinh ra ở bánh xe và áp suất trong dẫn động phanh biểu thị như sau : Mp1 k 1 p 1dñ (9.19) Mp2 k 2 p 2dñ (9.20) Ở đây : p1dđ, p2dđ – Áp suất trong dẫn động phanh của cơ cấu phanh trước và cơ cấu phanh sau. k1 và k2 – Hệ số tỷ lệ tương ứng với phanh trước và phanh sau. Từ các biểu thức (9.19) và (9.20) có thể xác định quan hệ giữa áp suất trong dẫn động phanh trước và phanh sau : p k M 2dñ = 1 p2 (9.21) p1dñ k2 M p1 140
  45. Trên hình 9.5 trình bày đồ thị quan hệ giữa áp suất p1dđ và p2dđ khi quan hệ giữa các mômen phanh Mp1 và Mp2 tuân theo đường đặc tính phanh lý tưởng. Như vậy để đảm bảo sự phanh lý tưởng thì quan hệ giữa áp suất trong dẫn động phanh sau và trong dẫn động phanh trước phải tuân theo đồ thị trên hình 9.5. Đồ thị này được gọi là đường đặc tính lý tưởng của bộ điều hòa lực phanh. Muốn đảm bảo đường đặc tính p2 = f(p1) theo đúng đồ thị trên hình 9.5 thì bộ điều hòa lực phanh phải có kết cấu rất phức tạp. Hiện nay trên ô tô để bảo đảm đường đặc tính thực tế gần đúng với đường đặc tính lý tưởng người ta phải bố trí hệ thống chống hãm cứng bánh xe khi phanh. p2 1 2 0 p1 Hình 9.5: Đồ thị biểu diễn quan hệ giữa áp suất trong dẫn động phanh sau và dẫn động phanh trước để đảm bảo sự phanh lý tưởng. 1 - Đầy tải 2 - Không tải. 9.1.4. Mômen phanh cần thiết tại các cơ cấu phanh : Mômen phanh sinh ra ở các cơ cấu phanh của ô tô phải đảm bảo giảm tốc độ hoặc dừng ô tô hồn tồn với gia tốc chậm dần trong giới hạn cho phép. Ngồi ra còn phải đảm bảo giữ ô tô đứng ở độ dốc cực đại (mômen phanh sinh ra ở phanh tay). Đối với ô tô lực phanh cực đại có thể tác dụng lên một bánh xe ở cầu trước khi phanh trên đường bằng phẳng là: G Gb F 1t m m (9.22) p12 1p 2L 1p Ở cầu sau là: 141
  46. G Ga F 2t m m (9.23) p22 2p 2L 2p Ở đây: G Trọng lượng ô tô khi tải đầy. G1t, G2t Tải trọng tương ứng (phản lực của đất) tác dụng lên cầu trước và sau ở trạng thái tĩnh, trên bề mặt nằm ngang. m1p, m2p Hệ số thay đổi tải trọng tương ứng lên cầu trước và cầu sau khi phanh. a, b Khoảng cách tương ứng từ trọng tâm ô tô đến cầu trước và cầu sau. L Chiều dài cơ sở của ô tô. Hệ số bám dọc giữa lốp và đường ( = 0,7 ÷ 0,8). Các hệ số m1p, m2p cho trường hợp phanh với cường độ phanh lớn nhất (jp = jpmax) sẽ là : j h 'h m 1 max g 1 g (9.24) 1p gb b j h 'h m 1 - max g 1 - g (9.25) 2p ga a Trong đó: hg Chiều cao trọng tâm của ô tô. g Gia tốc trọng trường. jmax Gia tốc chậm dần cực đại khi phanh. j ’ Hệ số đặc trưng cho cường độ phanh. ( ’ = max ) g Ở ô tô cơ cấu phanh đặt trực tiếp ở tất cả các bánh xe (phanh chân). Do đó mômen phanh tính tốn cần sinh ra của mỗi cơ cấu phanh ở cầu trước là: G G M 1t m r (b ' h ) r (9.26) p1 2 1p b 2L g b Ở cầu sau (ô tô hai cầu) là: G G M 2t m r (a - ' h ) r (9.27) p2 2 2p b 2L g b Trong đó: rb – Bán kính làm việc trung bình của bánh xe. Khi tính tốn có thể chọn ’ = 0,4  0,5 và = 0,7  0,8. Đứng về kết cấu của cơ cấu phanh guốc mà xét thì mômen phanh Mp1 và Mp2 phải bằng: Mp1 = M’p1 + M’’p1 (9.28) 142
  47. Mp2 = M’p2 + M’’p2 (9.29) Ở đây: M’p1, M’’p1 – Mômen phanh sinh ra ở má phanh trước và má phanh sau của mỗi cơ cấu phanh ở cầu trước. M’p2, M’’p2 – Mômen phanh sinh ra ở má phanh trước và má phanh sau của mỗi cơ cấu phanh ở cầu sau. 9.2. XÁC ĐỊNH CÁC CHỈ TIÊU ĐÁNH GIÁ HIỆU QUẢ PHANH : 9.2.1. Gia tốc chậm dần khi phanh : Gia tốc chậm dần khi phanh là một trong những chỉ tiêu quan trọng để đánh giá chất lượng phanh ôtô. Khi phân tích các lực tác dụng lên ô tô có thể viết phương trình cân bằng lực kéo khi phanh ô tô như sau : Fj = Fp + Ff + F + F Fi (9.30) Ở đây : Fj – Lực quán tính sinh ra khi phanh ôtô. Fp – Lực phanh sinh ra ở các bánh xe. Ff – Lực cản lăn. F – Lực cản không khí. F – Lực để thắng tiêu hao cho ma sát cơ khí. Fi – Lực cản lên dốc. Khi phanh trên đường nằm ngang thì lực cản lên dốc Fi =0. Khi phanh thì F, Ff và F không đáng kể, có thể bỏ qua. Sự bỏ qua này chỉ gây sai số khoảng 1,5  2%. Khi bỏ qua các lực F, Ff , F, và khi ô tô phanh trên đường nằm ngang Fi = 0, ta có phương trình sau : Fj = Fp (9.31) Lực phanh lớn nhất Fpmax được xác định theo điều kiện bám khi các bánh xe bị phanh hồn tồn và đồng thời theo biểu thức : Fpmax = G G Hay i jpmax = G (9.32) g Với : i – Hệ số tính đến ảnh hưởng các trọng khối quay của ôtô. Từ (9.32) ta xác định được gia tốc chậm dần cực đại khi phanh : .g jpmax = (9.33) δi Để jpmax tăng thì ta giảm i và tăng . + Giảm i bằng cách tách ly hợp khi phanh gấp. + Tăng bằng cách cải thiện tình trạng mặt đường. 143
  48. 9.2.2. Thời gian phanh : Thời gian phanh cũng là một trong những chỉ tiêu để đánh giá chất lượng phanh. Thời gian phanh càng nhỏ thì chất lượng phanh càng tốt. Để xác định thời gian phanh có thể sử dụng biểu thức sau : dv .g jp = = (9.34) dt δi δ Suy ra : dt = i dv (9.35) .g Muốn xác định thời gian phanh nhỏ nhất tpmin cần tích phân dt trong giới hạn từ thời điểm ứng với vận tốc khi bắt đầu phanh v1, vận tốc khi kết thúc phanh v2 (v1 > v2). v1 δi δ i tpmin = dv = (v1 – v2) (9.36) .g .g v2 Khi phanh ôtô đến lúc dừng hẳn thì v2 = 0, do đó : δi .v1 tpmin = (9.37) .g Từ biểu thức trên ta thất rằng thời gian phanh ôtô nhỏ nhất phụ thuộc vào vận tốc bắt đầu phanh của ôtô, phụ thuộc vào hệ số i và hệ số bám giữa các bánh xe với mặt đường. Để cho thời gian phanh nhỏ nhất cần phải giảm i, vì vậy người lái xe nên cắt ly hợp khi phanh. Ngồi ra phải thực hiện các biện pháp để tăng hệ số bám dọc . 9.2.3. Quãng đường phanh : Quãng đường phanh là chỉ tiêu quan trọng nhất để đánh giá chất lượng phanh của ôtô. Để xác định quãng đường phanh nhỏ nhất, có thể sử dụng biểu thức 9.34 bằng cách nhân hai vế với dS (dS – Vi phân của quãng đường), ta có : dv .g dS = dS dt δi .g Hay là : vdv = dS (9.38) δi 144
  49. Quãng đường phanh nhỏ nhất được xác định bằng cách tích phân dS trong giới hạn từ v1 đến v2. Ta có : v1 v1 δ i δi Spmin = vdv= vdv (9.39) .g .g v2 v2 δi 2 2 Spmin = ( v v ) (9.40) 2. .g 1 2 Khi phanh đến lúc ô tô dừng hẳn v2 = 0 : 2 δi .v1 Spmin = (9.41) 2. .g Từ biểu thức trên ta thấy rằng quãng đường phanh nhỏ nhất phụ thuộc vào vận tốc chuyển động của ô tô lúc bắt đầu phanh, phụ thuộc vào hệ số bám và hệ số tính đến ảnh hưởng của các khối lượng quay i. Để giảm quãng đường phanh cần giảm hệ số i, cho nên nếu người lái cắt ly hợp trước khi phanh thì quãng đường phanh sẽ ngắn hơn. Cần lưu ý rằng, theo các công thức trên thì jpmax, tpmin, Spmin phụ thuộc vào hệ số bám , nhưng do lại phụ thuộc vào tải trọng tác dụng lên các bánh xe, tức là phụ thuộc vào trọng lượng tồn bộ của xe G. Bởi vậy jp, tp, Sp có phụ thuộc vào G, mặc dù trong các công thức tính jp, tp, Sp không có mặt của G. 9.2.4. Lực phanh và lực phanh riêng: Lực phanh và lực phanh riêng cũng là chỉ tiêu để đánh giá chất lượng phanh. Chỉ tiêu này được dùng thuận lợi nhất là khi thử phanh ôtô trên bệ thử. Lực phanh sinh ra ở các bánh xe của ô tô xác định theo biểu thức : M p Fp = (9.42) rb Ở đây : Fp – Lực phanh ô tô. Mp – Mômen phanh ở các cơ cấu phanh. rb – Bán kính làm việc trung bình của bánh xe. Lực phanh riêng là lực phanh tính trên một đơn vị trọng lượng tồn bộ G của ô tô, nghĩa là : Fp Fpr = (9.43) G Lực phanh riêng cực đại ứng với khi lực phanh cực đại : 145
  50. Fp max .G Fprmax = = = (9.44) G G Từ biểu thức (9.44) ta thấy rằng lực phanh riêng cực đại bằng hệ số bám . Như vậy về lý thuyết mà nói, trên mặt đường nhựa khô nằm ngang, lực phanh riêng cực đại có thể đạt được giá trị 7580%. Trong thực tế giá trị đạt được thấp hơn nhiều, chỉ khoảng 4565%. * Nhận xét : Trong các chỉ tiêu đánh giá chất lượng phanh thì chỉ tiêu quãng đường phanh là đặc trưng nhất và có ý nghĩa quan trọng nhất, vì quãng đường phanh cho phép người lái hình dung được vị trí xe sẽ dừng trước một chướng ngại vật mà họ phải xử trí để khỏi xảy ra tai nạn khi người lái xe phanh ở tốc độ ban đầu nào đấy . Cần chú ý rằng bốn chỉ tiêu nêu trên đều có giá trị ngang nhau (giá trị tương đương), nghĩa là khi đánh giá chất lượng phanh chỉ cần dùng một trong bốn chỉ tiêu trên. 9.3. ỔN ĐỊNH CỦA Ô TÔ KHI PHANH: 9.3.1. Ổn định của ô tô khi phanh nếu các bánh xe bị hãm cứng: Để thấy rõ ổn định của ô tô khi phanh nếu các bánh xe bị hãm cứng, trước hết chúng ta phải khảo sát mối quan hệ giữa phản lực tiếp tuyến Xb và phản lực ngang Yb tác dụng từ mặt đường lên bánh xe trong quá trình phanh. Khi phanh, phản lực tiếp tuyến tác dụng lên bánh xe sẽ là: Xb = Fpb + Ffb (9.45) Nhưng do Ffb rất nhỏ so với Fpb, nên có thể coi: Xb = Fpb (9.46) Ở đây: Fpb – Lực phanh tác dụng lên bánh xe. Ffb – Lực cản lăn tác dụng lên bánh xe. T Y G Fy Fy Zb Yb Zb Yb Hình 9.6: Nguyên nhân xuất hiện phản lực ngang ở các bánh xe khi phanh. Trong quá trình phanh, nếu có lực ngang Y tác dụng lên thân xe, thì tại tâm các bánh xe sẽ có lực ngang Fy tác dụng, lập tức dưới các bánh xe xuất hiện các phản lực ngang Yb ngược chiều với Fy ( hình 9.6 ). Chúng ta giả thiết rằng: φx φ y φ tq φ Lúc này dưới bánh xe sẽ xuất hiện đồng thời các lực Fpb và Yb. Hợp lực của chúng là Nb: 146
  51. 2 2 Nb F pb + Y b (9.47) Phản lực tổng hợp Nb cũng bị giới hạn bởi điều kiện bám giữa bánh xe với mặt đường. Nghĩa là: φZ 2 2 Nb F pb + Y b N bmax b (9.48) Giá trị Nbmax xác định một vòng tròn có tâm O tại tâm bề mặt tiếp xúc giữa bánh xe với mặt đường và bán kính R = Nbmax. Vòng tròn này được gọi là vòng tròn giới hạn bám. Nếu các lực Fpb, Yb hoặc Nb lớn hơn R thì bánh xe sẽ trượt ( hình 9.7). x R O Yb y F pbmax pb F Nbmax Ybmax Hình 9.7: Vòng tròn giới hạn bám của bánh xe khi phanh. Từ (9.47) ta suy ra: 2 2 Yb = N b - F pb (9.49) Theo (9.49) dễ thấy rằng: Khi lực phanh Fpb tăng thì phản lực ngang Yb giảm và ngược lại. Đặt biệt nếu: Fpb = Fpbmax = Zb và Nb = Nbmax = Zb thì Yb = 0 (9.50) * Kết luận: Nếu lực phanh Fp = Fpmax = Zb và bánh xe bắt đầu bị hãm cứng thì phản lực ngang tác dụng lên bánh xe Yb = 0. Lúc này chỉ cần một lực ngang nhỏ Y tác dụng lên thân xe thì ở bánh xe sẽ xuất hiện một lực ngang Fy rất nhỏ tác dụng tại tâm bánh xe là làm cho bánh xe sẽ trượt ngang, do ở dưới bánh xe Yb = 0 và không còn cân bằng lực theo chiều ngang. Chúng ta sẽ sử dụng kết luận trên để xét ổn định của xe khi phanh nếu các bánh xe bị hãm cứng. 9.3.1.1. Các bánh xe ở cầu sau bị hãm cứng khi phanh: 147
  52. Giả thiết rằng xe đang phanh trên đường không thẳng tuyệt đối, cho nên lực quán tính Fj sẽ tạo với trục dọc của xe một góc α 0 ( xem hình 9.8 ). Nếu đường thẳng thì vẫn có lực ngang tác dụng tại trọng tâm T, đó là thành phần Gsin do mặt đường nghiêng ngang một góc β 0 . Như vậy, khi phanh sẽ xuất hiện lực ngang Y tác dụng tại T ( Y = Fjy hay Y = Gsin hoặc Y là lực của gió tạt ngang ). y a b Fjy Mq Fj v x Fp1 Fp2 Fjx T Y 1 Y2 = 0 Hình 9.8: Các bánh xe ở cầu sau bị hãm cứng. Khi có lực ngang tác dụng tại T thì ở các bánh xe cầu trước xuất hiện các phản lực ngang '"'" Yb1 ,Y b1 ( Y b1 + Y b1 = Y 1 ) , còn ở cầu sau do các bánh xe đã bị hãm cứng ( Fp2 Z2 ) nên '" '" Yb2 = 0, Y b2 = 0 , suy ra Y2 = Y b2 + Y b2 0 . Dễ thấy rằng Y1 = Fjy và Y1, Fjy là một ngẫu lực nên đã làm xuất hiện mômen Mq làm quay xe: Mq = Y1a = Fjya (9.51) Với chiều của Mq như ở hình 9.8 sẽ làm góc tăng lên, dẫn đến Fjy tăng lên và làm cho giá trị Mq càng tăng, xe có khả năng bị quay ngang và nguy cơ xe bị lật đổ là khó tránh khỏi. Bởi vậy, nếu các bánh xe ở cầu sau bị hãm cứng khi phanh là trạng thái chuyển động không ổn định. 9.3.1.2. Các bánh xe cầu trước bị hãm cứng khi phanh: Vẫn giả thiết rằng: khi xe đang phanh thì có lực ngang Y tác dụng lên thân xe ( Y = Fjy hay Y = Gsin hoặc Y là lực của gió tạt ngang ). Lúc này các bánh xe ở cầu trước bị hãm cứng ( xem hình 9.9 ). y a b Fjy Fj v x Fp1 Fp2 Fjx T Y ' 2 Mq 148 Y1 = 0
  53. Hình 9.9: Các bánh xe ở cầu trước bị hãm cứng. Khi có lực ngang tác dụng tại T thì ở các bánh xe cầu sau xuất hiện các phản lực ngang '"'" Yb2 ,Y b2 ( Y b2 + Y b2 = Y 2 ) , còn ở cầu trước do các bánh xe bị hãm cứng ( Fp1 Z1 ) nên '" '" Yb1 = Y b1 = 0 , suy ra Y1 = Y b1 + Y b1 = 0 . ' Ta thấy rằng Y2 = Fjy và Y2, Fjy là một ngẫu lực nên đã làm xuất hiện mômen Mq làm quay xe: ' Mq = Y 2 b = F jy b (9.52) ' Với chiều của Mq như hình 9.9 sẽ làm góc giảm xuống, dẫn đến Fjy giảm xuống và ' làm cho giá trị Mq càng giảm, tức là nguyên nhân làm quay xe càng giảm xuống và trở về không. Cho nên nguy cơ xe bị quay ngang là không thể xảy ra. Tuy nhiên, khi các bánh xe ở cầu trước bị hãm cứng, do các phản lực ngang tác dụng lên các bánh xe trước bằng không. Nên xe không còn điều khiển được thông qua hệ thống lái, tức là xe bị mất tính ổn định hướng. Bởi vậy, ở trường hợp này xe cũng chuyển động không ổn định. * Kết luận: +Khi phanh xe, để xe chuyển động ổn định thì không được để các bánh xe cầu trước và cầu sau bị hãm cứng. + Nếu tất cả các bánh xe ở cả hai cầu bị hãm cứng và không có lực ngang tác dụng lên xe thì xe sẽ trượt thẳng. Nếu có lực ngang tác dụng lên xe thì xe sẽ trượt xiên ( vì lúc này ngồi lực ngang Y còn có lực Fj tác dụng theo chiều dọc của xe, nên hợp lực của chúng làm cho xe trượt ) và xe chuyển động không ổn định. Nếu hợp lực của lực ngang Y và lực Fj quá lớn thì xe có thể bị lật đổ. 9.3.2. Ổn định của ô tô khi phanh nếu các lực phanh phân bố không đều: Trong quá trình phanh ô tô thì trục dọc của ô tô có thể bị nghiêng đi một góc  nào đấy so với phương quỹ đạo đang chuyển động. Sở dĩ như vậy là do tổng các lực phanh sinh ra ở các bánh xe bên phải khác với tổng các lực phanh sinh ra ở các bánh xe bên trái và tạo thành mômen quay vòng Mq quanh trục thẳng đứng z đi qua trọng tâm T của ô tô (hình 9.10). 149
  54. Khi phanh mà ô tô bị quay đi một góc quá mức quy định sẽ ảnh hưởng đến an tồn chuyển động trên đường. Vậy tính ổn định của ô tô khi phanh là khả năng ô tô giữ được quỹ đạo chuyển động như ý muốn của người lái trong quá trình phanh. Trong phần này chúng ta nghiên cứu sự ổn định của ô tô khi phanh mà các lực phanh phân bố không đều. Sơ đồ nghiên cứu như hình 9.10. Giả sử ô tô đang chuyển động theo hướng của trục x nhưng sau khi phanh thì ô tô bị lệch một góc . Trong khi phanh thì ở các bánh xe bên phải có các lực phanh Fp.p1 ở cầu trước và Fp.p2 ở cầu sau, còn ở các bánh xe bên trái có các lực phanh Fp.t1 ở cầu trước và Fp.t2 ở cầu sau. Tổng các lực phanh ở các bánh xe bên phải là: Fp.p = Fp.p1 +Fp.p2 (9.53) Và tổng các lực phanh ở các bánh xe bên trái bằng: Fp.t = Fp.t1 + Fp.t2 (9.54) Giả sử rằng tổng các lực phanh bên phải Fp.p lớn hơn tổng các lực phanh bên trái Fp.t lúc đó ô tô sẽ quay vòng theo hướng mũi tên chỉ trên hình 9.10 quanh trọng tâm T của ô tô. Mômen quay Mq được xác định theo biểu thức: BBB M = F F = ( F F ) (9.55) q p.p2 p.t 2 p.p p.t 2 Do có ma sát giữa bánh xe và mặt đường cho nên khi xuất hiện mômen quay vòng Mq thì ở các bánh xe của cầu trước sẽ có phản lực Ry1 tác dụng từ đường theo phương ngang (hình 9.10) và ở các bánh xe sau sẽ có phản lực Ry2 tác dụng. Phương trình chuyểγn đ=ộ Mng củ aRô t aô đ ốRi vớ bi trọng tâm T được viết dưới dạng : Iz q y1 y2 (9.56) Vì ô tô đã bị xoay đi một góc  nghĩa là mômen quay vòng Mq lớn hơn nhiều so với mômen do các lực Ry1 và Ry2 sinh ra, cho nên để đơn giản cho tính tốn ta có thể bỏ qua các lực Ry1 và Ry2 , lúc đó phương γtr ì=nh M (9.56) có dạng: Mq Iz q hoặc γ = (9.57) Iz Ở đây: Iz – Mômen quán tính khối lượng của ô tô quanh trục z đi qua trọng tâm T. 150
  55. x B Ry1 a v  Fp.t1 L Mq Fp.p1 b T Ry2  Fp.t2 Fp.p2 y Hình 9.10: O Sơ đồ lực tác dụng lên ô tô khi phanh mà có hiện tượng quay xe do lực phanh phân bố không đều. Lấy tích phân phương trình (9.57) ta được: . Mq γ = t + C1 (9.58) Iz . Theo điều kiện ban đầu, khi t = 0 thì  = 0 nên γ = 0, thay vào (9.58) ta có: C1 = 0 , nên: . M γ = q t (9.59) Iz Lấy tích phân phương trình (9.59) ta được: Mq 2 γ = t + C2 (9.60) 2Iz Ở đây: t – Thời gian phanh. Để tìm giá trị C2 ta cũng sử dụng điều kiện ban đầu khi t = 0 thì  = 0 và lắp vào phương trình (9.60) ta có C2 = 0, từ đó rút ra được biểu thức cuối cùng để xác định góc lệch  do mômen quay vòng Mq gây ra, mà mômen Mq là do sự không đồng đều lực phanh ở các bánh xe phía bên phải và phía bên trái của ô tô tạo ra: 151
  56. M γ = q t 2 (9.61) 2Iz Từ biểu thức (9.61) thấy rằng góc lệch  tỷ lệ thuận với mômen quay vòng Mq, với bình phương thời gian phanh t và tỷ lệ nghịch với mômen quán tính khối lượng Iz của ô tô quanh trục z đi qua trọng tâm của nó. Theo yêu cầu của nhà máy chế tạo thì ô tô khi xuất xưởng ( chế tạo hoặc sửa chữa) phải đảm bảo lực phanh ở các bánh xe trên cùng một cầu là như nhau nhằm đảm bảo tính ổn định khi phanh. Độ chênh lệch tối đa giữa các lực phanh ở các bánh xe trên cùng một cầu không vượt quá 15% so với giá trị lực phanh cực đại ở các bánh xe của cầu này. Giả sử rằng các bánh xe ở phía bên phải có lực phanh lớn nhất Fp.pmax theo điều kiện bám giữa bánh xe với mặt đường, thì lực phanh thấp nhất của các bánh xe phía bên trái cho phép là: Fp.tmin = 0,85 Fp.pmax (9.62) Lúc đó mômen quay vòng cực đại Mqmax được xác định như sau: BB M = F - F qmax p.pmax2 p.tmin 2 Hay : B M = (F - F ) qmax p.pmax p.tmin 2 B = (F - 0,85 F ) p.pmax p.pmax 2 Từ đó ta có: Mqmax = 0,075 BFp.pmax (9.63) Thế giá trị mômen Mqmax từ biểu thức (9.63) vào biểu thức (9.61) ta tìm được góc lệch cực đại γmax : ' 0,075 BFpmax 2 γmax = t (9.64) 2Iz ' Ở biểu thức (9.64) thành phần Fpmax cần phải hiểu là lực phanh cực đại ở một phía ( có thể phía bên phải hoặc có thể phía bên trái ) theo điều kiện bám. φ G Lực phanh cực đại F' = (9.65) pmax2 max ' Thế giá trị Fpmax từ biểu thức (9.65) vào biểu thức (9.64), cuối cùng ta có biểu thức xác định γmax sau đây: φ 2 BGt max γmax = 0,019 (9.66) Iz 152
  57. o Góc lệch cực đại γmax cho phép khi phanh không vượt quá 8 . 9.4. PHANH CHỐNG HÃM CỨNG ABS. KHẢ NĂNG NÂNG CAO HIỆU QUẢ VÀ ỔN ĐỊNH KHI PHANH : Muốn nâng cao hiệu quả và ổn định của ô tô khi phanh thì phải đảm bảo được Fp1 = F 1 và Fp2 = F 2 trong suốt quá trình phanh. Vì nếu Fp1 F 1 thì các bánh xe cầu trước bị hãm cứng và xe sẽ mất tính dẫn hướng (xe không điều khiển được) hoặc nếu Fp2 > F 2 thì các bánh xe cầu sau bị hãm cứng và trượt lết trên đường, lúc này chỉ cần một lực ngang nhỏ tác dụng lên xe là các bánh xe sẽ trượt ngang và xe sẽ mất tính ổn định khi phanh. Khi các bánh xe bị trượt ngang thì quỹ đạo chuyển động của xe sẽ thay đổi, nếu lúc này lực quán tính tác dụng lên xe quá lớn thì xe có thể bị lật đổ. Hiện tượng nguy hiểm nêu trên thường gặp ở hệ thống phanh thường cổ điển khi phanh gấp hoặc phanh trên đường trơn có hệ số bám nhỏ. Hiện nay, vận tốc của các loại ô tô càng ngày càng được nâng lên. Bởi vậy yêu cầu đặc biệt được đặt ra cho hệ thống phanh trên các xe đời mới là phải loại trừ được nhược điểm lớn vừa nêu trên của hệ thống phanh thường. Cho nên, trên các ô tô hiện đại đã được trang bị hệ thống phanh chống hãm cứng ABS (Antilock Braking System). Nhiệm vụ của hệ thống phanh ABS là hiệu chỉnh liên tục áp suất trong dẫn động phanh để lực phanh ở các bánh xe luôn luôn xấp xỉ bằng lực bám, nhờ đó các bánh xe không bị hãm cứng và giữ cho độ trượt giữa bánh xe với mặt đường thay đổi trong một giới hạn hẹp xung quanh giá trị po (hình 9.11). Cho nên hệ thống phanh ABS đã đảm bảo được hiệu quả phanh cao nhất, duy trì được tính dẫn hướng và tính ổn định tốt khi phanh (do xung quanh giá trị po thì x xmax và y có giá trị tương đối lớn). x y Dung sai trượt của ABS 0,8 xmax Đường bê tông khô x 0,60,4 y Đường bê tông ướtâ x 0,2 Đường tuyết Đường băng x 153
  58. po Hình 9.11: Đồ thị biểu diễn sự thayđổi hệ số bám dọc và hệ số bám ngang theo độ trượt tươpng(%)đối  . 0 20 40 60 x 80 100y p Từ đồ thị trên hình 9.11 cho chúng ta thấy: Hệ số bám một mặt phụ thuộc vào loại đường và tình trạng mặt đường, mặt khác còn phụ thuộc vào độ trượt của bánh xe với mặt đường khi phanh. Hệ số bám dọc khi phanh được định nghĩa : Fp x = (9.67) Gb Với định nghĩa trên thì x = 0 khi lực phanh Fp = 0, tức là lúc chưa phanh. Khi bắt đầu phanh, x tăng nhanh và độ trượt p cũng tăng lên. Khi độ trượt nằm trong khoảng 15  25% thì x xmax, đặc biệt khi p = po = 20% thì x = xmax và y có giá trị khá lớn. Bởi vậy giá trị po được gọi là độ trượt tối ưu. Thực nghiệm chứng minh rằng, tùy từng loại xe mà po có thể thay đổi trong giới hạn 15  25%. Ở hệ thống phanh thường, khi gặp nguy hiểm, người lái đạp mạnh lên bàn đạp phanh làm cho áp suất trong dẫn động phanh tăng cao, dẫn đến Fpi > F i ở các bánh xe, lập tức các bánh xe bị hãm cứng và trượt lết hồn tồn p = 100%, do đó x giảm đi gần một nửa, nên lực phanh Fpi cũng giảm đi gần một nửa, đồng thời khi p = 100% thì y 0, dẫn đến F y = y.Gb 0, cho nên khả năng bám ngang của các bánh xe không còn nữa, lúc này chỉ cần một lực ngang nhỏ tác dụng lên xe là xe sẽ bị trượt ngang (hình 9.12). Ưu điểm vượt trội của hệ thống phanh ABS so với phanh thường là : do ABS hiệu chỉnh liên tục áp suất trong dẫn động phanh, nên độ trượt p chỉ dao động trong giới hạn 10  30% (hình 9.12). Ở trong giới hạn này x xmax nên Fpmax xmax.Gb = F , bởi vậy hiệu quả phanh sẽ cao nhất. Mặt khác y ở trong giới hạn này cũng có giá trị khá lớn, nên F y = y.Gb cũng có giá trị lớn, các bánh xe sẽ không bị trượt ngang, do đó đảm bảo được tính dẫn hướng và độ ổn định của xe khi phanh. x, y x 0,8 xmax 0,6 0,4 y 0,2 po p (%) 0 20 40 60 80 100 154
  59. Hình 9.12: Sự thay đổi hệ số bám dọc x và hệ số bám ngang y theo độ trượt tương đối p của bánh xe khi phanh. Để giữ cho các bánh xe không bị hãm cứng và đảm bảo hiệu quả phanh cao cần phải điều chỉnh áp suất trong dẫn động phanh sao cho độ trượt của bánh xe với mặt đường thay đổi quanh giá trị po trong giới hạn hẹp. Các hệ thống chống hãm cứng bánh xe khi phanh có thể sử dụng các nguyên lý điều chỉnh sau đây: + Theo gia tốc góc chậm dần của bánh xe được phanh (). + Theo giá trị độ trượt cho trước (p). + Theo giá trị của tỷ số vận tốc góc của bánh xe với gia tốc góc chậm dần của nó. Hệ thống chống hãm cứng bánh xe khi phanh gồm các phần tử sau : + Cảm biến để phát tín hiệu về tình trạng của đối tượng cần được thông tin, cụ thể là tình trạng của bánh xe đang được phanh (cảm biến vận tốc góc, cảm biến áp suất, cảm biến gia tốc của xe). + Bộ điều khiển để xử lý các thông tin và phát các lệnh nhả phanh hoặc phanh bánh xe (các bộ điều khiển này thường là loại điện tử). + Bộ thực hiện để thực hiện các lệnh do bộ điều khiển phát ra (bộ thực hiện có thể là loại thủy lực, loại khí hay loại hỗn hợp thủy khí). Các hệ thống chống hãm cứng bánh xe hiện nay thường sử dụng nguyên lý điều chỉnh áp suất trong dẫn động phanh theo gia tốc góc chậm dần của bánh xe và ở bánh xe có bố trí cảm biến vận tốc góc. Biến thiên của vận tốc góc theo thời gian sẽ cho ra giá trị gia tốc góc. Chúng ta sẽ xem xét sự làm việc của hệ thống chống hãm cứng bánh xe khi phanh bằng nguyên lý điều chỉnh theo gia tốc góc chậm dần. Trên hình 9.12 trình bày đồ thị chỉ sự thay đổi một số thông số của hệ thống phanh và của chuyển động của bánh xe khi có trang bị hệ thống chống hãm cứng bánh xe khi phanh. Khi tác động lên bàn đạp phanh thì áp suất trong dẫn động tăng lên, nghĩa là mômen phanh Mp tăng lên làm tăng giá trị của gia tốc góc chậm dần của bánh xe và làm tăng độ trượt của nó. Sau khi vượt qua điểm cực đại trên đường cong x = f(p) thì gia tốc góc chậm dần của bánh xe bắt đầu tăng đột ngột. Điều này báo hiệu bánh xe có xu hướng bị hãm cứng. Giai đoạn này của quá trình phanh có bộ chống hãm cứng bánh xe sẽ ứng với các đường cong 0-1 trên hình 9.13 a, b và c. Giai đoạn này được gọi là pha I (pha bắt đầu phanh hay là pha tăng áp suất trong dẫn động phanh). Bộ điều khiển của hệ thống chống hãm cứng bánh xe khi phanh lúc này ghi gia tốc góc tại điểm 1 đạt giá trị tới hạn (đoạn c1 trên hình 9.13 c) và ra lệnh cho bộ thực hiện phải giảm áp suất trong dẫn động. Sự giảm áp suất được bắt đầu với độ chậm trễ nhất định do đặc tính của bộ chống hãm cứng bánh xe khi phanh. Quá trình diễn biến từ điểm 1-2 được gọi là pha II (pha giảm sự phanh hay là pha giảm áp suất trong dẫn động phanh). Gia tốc góc của bánh xe lúc này giảm dần và tại điểm 2 gia tốc tiến gần giá trị 0. Giá trị gia tốc góc lúc này tương ứng với đoạn c2 trên hình 9.13 c. Sau khi ghi lại giá trị này, bộ điều khiển ra lệnh cho bộ thực hiện ổn định áp suất trong dẫn động. Lúc này bánh xe sẽ tăng tốc trong chuyển động tương đối và vận tốc của bánh xe tiến gần tới vận tốc của ôtô, nghĩa là độ trượt sẽ giảm và như vậy hệ số bám dọc x tăng lên (đoạn 2-3). Giai đoạn này được gọi là pha III (pha giữ áp suất ổn định). 155
  60. Bởi vì mômen phanh trong thời gian này được giữ cố định cho nên gia tốc góc chậm dần cực đại của bánh xe trong chuyển động tương đối sẽ phát sinh tương ứng với lúc hệ số bám dọc x đạt giá trị cực đại. Gia tốc góc chậm dần cực đại này được chọn làm thời điểm phát lệnh và nó tương ứng với đoạn c3 trên hình 9.13 c. Lúc này bộ điều khiển ghi lại giá trị gia tốc góc này và ra lệnh cho bộ thực hiện tăng áp suất trong dẫn động phanh. Như vậy sau điểm 3 lại bắt đầu pha I của chu kỳ làm việc mới của hệ thống chống hãm cứng bánh xe khi phanh. Từ lập luận trên thấy rằng hệ thống chống hãm cứng bánh xe khi phanh điều khiển cho mômen phanh thay đổi theo chu kỳ khép kín 1-2-3-1 (hình 9.13 a), lúc ấy bánh xe làm việc ở gần hệ số bám dọc cực đại xmax và hệ số bám ngang y cũng có giá trị cao. Trong trường hợp bánh xe bị hãm cứng thì các thông số sẽ diễn biến theo đường đứt nét trên hình 9.13a. MP x y 1 2 3 1 2 MP 3 x y 0 a) p po p  3 1 C3 t daãn ấ 0 t 2 C2 ng phanh C p su 3 1 2 đ ộ Á 1 0 Thời gian t b) c) Hình 9.13: Sự thay đổi các thông số Mp, p và  khi phanh có hệ thống chống hãm cứng bánh xe. 156
  61. CHƯƠNG 10 QUAY VÒNG Ô TÔ Mục tiêu: Sau khi học xong chương này học viên có khả năng: 1. Xác định được động học và động lực học quay vòng của ô tô. 2. Trình bày được ảnh hưởng độ đàn hồi của lốp tới quay vòng ô tô. 3. Nêu được sự quay vòng ô tô khi lốp biến dạng ngang. 4. Trình bày được ảnh hưởng của tính chất quay vòng trung tính, thiếu hoặc thừa tới tính ổn định chuyển động của ô tô. 5. Xác định được tính ổn định chuyển động của xe khi quay vòng theo điều kiện lật đổ. 6. Nêu được tính ổn định chuyển động của xe khi quay vòng xét theo điều kiện trượt ngang. 7. Xác định tính ổn định của các bánh xe dẫn hướng. 158
  62. 10.1. ĐỘNG HỌC VÀ ĐỘNG LỰC HỌC QUAY VÒNG CỦA Ô TÔ : 10.1.1. Động học quay vòng của ô tô : Nhằm quay vòng ô tô, chúng ta có thể sử dụng các biện pháp sau : – Quay vòng các bánh xe dẫn hướng phía trước hoặc quay vòng tất cả các bánh xe dẫn hướng. – Truyền những mômen quay có giá trị khác nhau đến các bánh xe dẫn hướng chủ động bên phải và trái, đồng thời sử dụng thêm phanh để hãm các bánh xe phía trong so với tâm quay vòng. Trước hết, chúng ta xét động học quay vòng của xe khi bỏ qua biến dạng ngang của các bánh xe do độ đàn hồi của lốp. Nếu không tính đến độ biến dạng ngang của lốp, thì khi quay vòng véc tơ vận tốc chuyển động của các bánh xe sẽ trùng với mặt phẳng quay (mặt phẳng đối xứng) của bánh xe. Trên hình 10.1 mô tả động học quay vòng của ô tô có hai bánh dẫn hướng ở cầu trước khi bỏ qua biến dạng ngang của lốp. Ở trên sơ đồ : A, B là vị trí của hai trụ đứng. E là điểm giữa của AB. 1; 2 là góc quay vòng của bánh xe dẫn hướng bên ngồi và bên trong so với tâm quay vòng O. Bởi vậy góc sẽ là đại diện cho góc quay vòng của các bánh xe dẫn hướng ở cầu trước. Mặt khác AC và BD song song với trục dọc của ô tô. v2 q v1 A E B 1 2 L v4 v3 1 2 F C D Hình 10.1: Sơ đồ động học quay vòng của ô tô khi bỏ qua biến dạng ngang. 159
  63. Khi xe quay vòng, để các bánh xe không bị trượt lết hoặc trượt quay thì đường vuông góc với các véctơ vận tốc chuyển động của các bánh xe phải gặp nhau tại một điểm, đó là tâm quay vòng tức thời của xe (điểm O). Theo sơ đồ trên, ta chứng minh được biểu thức về mối quan hệ giữa các góc quay vòng của hai bánh xe dẫn hướng để đảm bảo cho chúng không bị trượt khi xe quay vòng : q cotg 1 – cotg 2 = (10.1) L Ở đây : q – Khoảng cách giữa hai đường tâm trụ đứng tại vị trí đặt các cam quay của các bánh xe dẫn hướng. L – Chiều dài cơ sở của xe. Từ biểu thức (10.1) ta có thể vẽ được đường cong biểu thị mối quan hệ lý thuyết giữa các góc 1 và 2 : 1 = f( 2) khi xe quay vòng không có trượt ở các bánh xe (hình 10.2). Hình 10.2: Đồ thị lý thuyết và thực tế về mối quan hệ giữa các góc quay vòng của hai bánh xe dẫn hướng. Như vậy, theo lý thuyết để đảm bảo cho các bánh xe dẫn hướng lăn không trượt khi quay vòng thì mối quan hệ giữa các góc quay vòng 1 và 2 phải luôn luôn thỏa mãn biểu thức (10.1). 160
  64. Trong thực tế, để duy trì được mối quan hệ nói trên người ta thường phải sử dụng hình thang lái. Hình thang lái là một cơ cấu gồm nhiều đòn và nối với nhau bởi các khớp. Hình thang lái đơn giản về mặt kết cấu nhưng không đảm bảo được mối quan hệ chính xác giữa các góc quay vòng 1 và 2 như đã nêu ở biểu thức (10.1). Để tiện so sánh sự sai khác của mối quan hệ lý thuyết và thực tế giữa các góc 1 và 2, trên hình 10.2 ta dựng thêm đường cong biểu thị mối quan hệ thực tế giữa các góc 1 và 2 : 1 = ft( 2). Độ sai lệch giữa các góc quay vòng thực tế và lý thuyết cho phép lớn nhất không được vượt quá 1,5o. L b v2 jx  j T q t v F j jh y   v1 1 R 2   Hình 10.3: Sơ đồ động học quay vòng của ô tô có hai bánh dẫn hướng phía trước. Ở phần này chúng ta sẽ đi xác định các thông số động học của ô tô khi quay vòng theo sơ đồ ở hình 10.3. Ở sơ đồ này, ý nghĩa của các ký hiệu như sau : 0 R – Bán kính quay vòng của xe. – Góc quay vòng của các bánh xe dẫn hướng. T – Trọng tâm của xe. v – Vận tốc chuyển động của tâm cầu sau. – Bán kính quay vòng của trọng tâm T.  – Vận tốc góc của xe khi quay vòng quanh điểm O.  – Gia tốc góc của xe khi quay vòng quanh điểm O. 161
  65.  – Góc tạo bởi OT và OF (F là tâm cầu sau). jh – Gia tốc hướng tâm của trọng tâm T. jt – Gia tốc tiếp tuyến của trọng tâm T. jx – Gia tốc hướng theo trục dọc xe của trọng tâm T. jy – Gia tốc hướng theo trục ngang xe của trọng tâm T. Từ hình 10.3 ta tính được bán kính quay vòng R của xe. Bán kính quay vòng là khoảng cách từ tâm quay vòng đến trục dọc của xe : L R = (10.2) tgα Vận tốc góc của xe khi quay vòng  được tính : v v  = = tg (10.3) R L Gia tốc góc của xe khi quay vòng  được xác định : dω tgα dv v dα  = = + (10.4) dt L dt Lcos 2 α dt Từ sơ đồ ở hình 10.3 ta có : R cos = (10.5) L2 R 2 Thay các giá trị từ (10.5) và (10.2) vào (10.4) ta có : 1 dv v L2 R 2 dα  = [ ] (10.6) R dt LR dt Hai thành phần gia tốc của trọng tâm T khi xe quay vòng jx và jy được xác định như sau: Như ta đã biết : 2 jh =  ; jt =  (10.7) Chiếu jh và jt lên trục dọc và trục ngang của xe, sau đó tổng hợp các vectơ gia tốc thành phần lại, ta có : 2 jx = jt.cos – jh.sin =  .cos –  .sin (10.8) 2 jy = jt.sin + jh.cos =  .sin +  .cos (10.9) Mặt khác theo hình 10.3 ta lại có : 162
  66. .cos = R ; .sin = b (10.10) Thay (10.3), (10.6) và (10.10) vào (10.8) và (10.9) ta nhận được : dv v R 2 L2 dα v 2 b jx = (10.11) dt LR dt R 2 dv v R 2 L2 dα b v 2 jy = [ ] + (10.12) dt LR dt R R 10.1.2. Động lực học quay vòng của ô tô : Chúng ta sẽ xét động lực học quay vòng của ô tô khi bỏ qua biến dạng ngang của các bánh xe theo sơ đồ ở hình 10.4. Trước hết xét trường hợp tổng quát : Xe có hai cầu chủ động, quay vòng trên đường có độ dốc ( 0) và vận tốc không phải hằng số (j 0). Ý nghĩa của các ký hiệu trên hình 10.4 như sau : Fjl – Lực quán tính ly tâm tác dụng tại trọng tâm T của xe. Fjlx; Fjly – Hai thành phần của lực Pjl theo trục dọc và trục ngang của xe. Ybi – Các phản lực ngang tác dụng dưới các bánh xe. Fki – Các lực kéo ở các bánh xe. Ffi – Các lực cản lăn. Fi – Lực cản lên dốc. F – Lực cản của không khí. Fj – Lực cản quán tính. Jz – Mômen quán tính tác dụng lên xe xung quanh trục đứng Tz. 163
  67. F’’k1 q Y’’b1 F’k1 x Y’b1 F’’f1 F F’f1 a  vt L Fjlx F jl y T Fjly b  F’k2 Fj F”k2 1 Fi  2  Jz 0 Y”b2 F’f2 Y’b2 F”f2 R Hình 10.4: Sơ đồ động lực học quay vòng của ô tô có hai bánh xe dẫn hướng phía trước. Để xe quay vòng ổn định và xe không bị trượt khỏi quỹ đạo cong của đường thì điều kiện cần và đủ là : Tổng tất cả các lực tác dụng lên xe theo chiều trục Tx và chiều trục Ty phải bằng không , đồng thời tổng các mômen tác dụng lên xe xung quanh trục đứng Tz đi qua trọng tâm của xe phải bằng không. Tức là : Phương trình cân bằng lực theo chiều trục Tx :  X i = 0 (10.12) Phương trình cân bằng lực theo chiều trục Ty :  Yi = 0 (10.13) Phương trình cân bằng mômen xung quanh trục thẳng đứng Tz :  M iz = 0 (10.14) Dựa vào các lực và mômen tác dụng lên xe ở hình 10.4, chúng ta sẽ viết được dạng khai triển các phương trình (10.12); (10.13); và (10.14). Khi xe quay vòng, lực quán tính ly tâm là lực chủ yếu làm cho xe chuyển động không ổn định và là nguyên nhân chính gây nên sự nghiêng ngang của thùng xe và làm lật đổ xe. Bởi vậy, chúng ta sẽ tính cụ thể độ lớn của nó : 164
  68. 2 2 Fjl = FFjlx jly (10.15) G dv v R 2 L2 d v 2 b Fjlx = mjx = (10.16) g dt LR dt R 2 2 2 G dv v R L d 2  Fjly = mjy = b v  (10.17) gR dt LR dt  dv Trong trường hợp ô tô chuyển động đều ( = 0) theo một quỹ đạo đường tròn thì góc dt d quay vòng của các bánh xe dẫn hướng sẽ không đổi = const ( = 0) nên ta có : dt Gbv 2 Fjlx = – (10.18) gR 2 Gv 2 Fjly = (10.19) gR Như vậy, khi xe quay vòng, lực Fjl phụ thuộc vào : khối lượng của xe, bán kính quay vòng và nhất là vận tốc chuyển động của ô tô. Để giảm Fjl chúng ta phải giảm vận tốc của xe và giảm khối lượng (không được chở quá tải), đồng thời phải tăng bán kính quay vòng của xe. Trong hai thành phần của Fjl thì thành phần lực ngang Fjly là lực chủ yếu làm cho xe chuyển động không ổn định, là nguyên nhân chính gây nên sự nghiêng ngang của thùng xe và làm cho xe lật đổ. Bởi vậy chúng ta phải giảm tối đa giá trị Fjly khi ô tô quay vòng. 10.2. ĐẶC TÍNH QUAY VÒNG THIẾU, THỪA VÀ TRUNG TÍNH VÀ CÁC YẾU TỐ ẢNH HƯỞNG: 10.2.1. Khái niệm về ảnh hưởng độ đàn hồi của lốp tới quay vòng ô tô : Ở phần này, chúng ta sẽ khảo sát trạng thái quay vòng của xe khi có tính đến biến dạng ngang của các bánh xe do độ đàn hồi của lốp. Khi xe quay vòng sẽ có các lực ngang tác dụng lên xe : lực Fjly, lực tạt ngang của gió hoặc thành phần Gsin của trọng lượng xe G (với  là góc nghiêng ngang của mặt đường). Đồng thời dưới các bánh xe sẽ xuất hiện các phản lực ngang Ybi có xu hướng chống lại các lực nêu trên và để giữ cho xe chuyển động ổn định (không bị trượt ngang). Khi có phản lực ngang Yb tác dụng giữa bánh xe và mặt đường thì lốp sẽ bị biến dạng ngang (hình 10.5). 165