Kỹ thuật lập trình - Chương 6: Kỹ thuật đệ quy

pdf 50 trang Gia Huy 3170
Bạn đang xem 20 trang mẫu của tài liệu "Kỹ thuật lập trình - Chương 6: Kỹ thuật đệ quy", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfky_thuat_lap_trinh_chuong_6_ky_thuat_de_quy.pdf

Nội dung text: Kỹ thuật lập trình - Chương 6: Kỹ thuật đệ quy

  1. Kỹ thuật đệ quy
  2. Nhắc lại kỹ thuật Đệ quy Recursive
  3. Mô tả đệ quy Recursive Mô tả theo cách phân tích đối tượng thành nhiều thành phần mà trong số các thành phần có thành phần mang tính chất của chính đối tượng được mô tả Mô tả đối tượng thông qua chính nó
  4. Ví dụ Mô tả đệ quy tập số tự nhiên N . Số 1 là số tự nhiên (1-N). . Số tự nhiên bằng số tự nhiên cộng 1. Mô tả đệ quy cấu trúc danh sách kiểu T . Cấu trúc rỗng là một danh sách kiểu T. . Ghép nối một thành phần kiểu T (nút kiểu T) với một danh sách kiểu T ta có một danh sách kiểu T. Mô tả đệ quy cây gia phả . Gia phả của một người bao gồm người đó và gia phả của cha và gia phả của mẹ
  5. Ví dụ Tính giai thừa của n . Định nghĩa không đệ quy n! n! = n * (n-1) * * 1 . Định nghĩa đệ quy: n! = 1 nếu n=0 n * (n-1)! nếu n>0 Mã C++ int factorial(int n) { if (n==0) return 1; else return (n * factorial(n - 1)); }
  6. Thực hiện tính giai thừa factorial (3) n=3 factorial (2) n=2 3*factorial(2) factorial (1) 6 n=1 2*factorial(1) 2 factorial (0) 1*factorial(0) n=0 1 return 1; 1
  7. Trạng thái hệ thống khi tính giai thừa Stack hệ thống factorial(0) factorial(1) factorial(1) factorial(1) factorial(2) factorial(2) factorial(2) factorial(2) factorial(2) factorial(3) factorial(3) factorial(3) factorial(3) factorial(3) factorial(3) factorial(3) t Thời gian hệ thống Trả về từ Trả về từ Trả về từ Trả về từ Gọi hàm Gọi hàm Gọi hàm Gọi hàm hàm hàm hàm hàm factorial(3) factorial(2) factorial(1) factorial(0) factorial(0 factorial(1 factorial(2 factorial(3 ) ) ) ) t
  8. Thành phần của mô tả đệ quy ▪ Phần neo: trường hợp suy biến của đối tượng ▫ Ví dụ: 1 là số tự nhiên, cấu trúc rỗng là danh sách kiểu T, 0!=1, SM (a[x:x]) là thao tác rỗng. ▪ Phần qui nạp: mô tả đối tượng (giải thuật) thông qua chính đối tượng (giải thuật) đó một cách trực tiếp hoặc gián tiếp. Ví dụ: ▫ n! = n * (n –1)! ▫ SM (a[m:n]) ≡Merge (SM (a[m:( m+n) div 2] , SM (a[(m+n) div 2 +1 : n]) )
  9. Phân loại đệ quy Đệ quy trực tiếp Đệ quy gián tiếp ▸Đệ quy tuyến tính ▸Đệ quy hỗ tương ▸Đê qui nhị phân ▸Đệ quy phi tuyến
  10. KieuDuLieu TenHam(Thamso) { if(Dieu Kien Dung) { Đệ quy ; return Gia tri tra ve; } tuyến tính ; TenHam(Thamso) ; ▪ Là đệ quy có dạng } P( ) { If (B) thực hiện S; else { thực hiện S* ; gọi P } } Với S , S* là các thao tác không đệ quy. ▪ VD: Hàm FAC(n) tính số hạng n của dãy n! int FAC( int n ) { if ( n == 0 ) return 1 ; else return ( n * FAC(n-1 )) ; }
  11. Ví dụ Tính S(n) = 1/(1*2) + 1/(2*3) + + 1/( n*(n+1) ) S(n) = 1/2 khi n==1 = S(n-1)+1/(n*(n+1)) float S(int n) { if ( n==1) return 0.5; else return S(n-1)+1.0/(n*(n+1)); }
  12. KieuDuLieu TenHam(Thamso) { if(Dieu Kien Dung) { Đệ quy ; return Gia tri tra ve; } nhị phân ; TenHam(Thamso); ; ▪ Là đệ quy có dạng TenHam(Thamso); P ( ) { ; If (B) thực hiện S; } else { thực hiện S*; gọi P ; gọi P; } } Với S , S* là các thao tác không đệ quy. ▪ Ví dụ: Hàm FIBO(n) tính số hạng n của dãy FIBONACCI int F(int n) { if ( n < 2 ) return 1; else return (F(n -1) + F(n -2)); }
  13. Ví dụ Tính tổng các giá trị của dãy số H(n), biết H(n) = n khi n 2 long H(int n) { if (n<3) return n; else return 2*H(n-1)*H(n-2); } long Tong(int n) { long tg=0; for( int i=1; i<=n;i++) tg+=H(i); return tg; }
  14. KieuDuLieu TenHam(Thamso) { if(Dieu Kien Dung) { Đệ quy ; return Gia tri tra ve; } phi tuyến ; vonglap(dieu kien lap) { TenHam(Thamso) ; } return Gia tri tra ve; } ▪ Là đệ quy mà lời gọi đệ quy được thực hiện bên trong vòng lặp. P ( ) { for ( to ) { thực hiện S ; if (điều kiện dừng) then thực hiện S*; else gọi P; } } Với S , S* là các thao tác không đệ quy.
  15. Đệ quy phi tuyến ▪ Ví dụ: Cho dãy { An } xác định theo công thức truy hồi : A0= 1 ; 2 2 2 2 An = n A0+(n-1) A1+ . . . + 2 An-2+ 1 An-1 int A( int n ) { if (n==0) return 1 ; else { int tg = 0 ; for (int i=0; i<n; i++) tg = tg + sqr(n-i) *A(i); return tg; } }
  16. KieuDuLieu TenHamX(Thamso) { if(Dieu Kien Dung) { Đệ quy ; return Gia tri tra ve; } tương hỗ ; return TenHamX(Thamso) TenHamY(Thamso); ▪ Là một loại đệ quy gián } tiếp KieuDuLieu TenHamY(Thamso) ▪ Trong đệ quy tương hỗ { if(Dieu Kien Dung) có 2 hàm, và trong thân { của hàm này có lời gọi ; return Gia tri tra ve; của hàm kia, điều kiện } ; dừng và giá tri trả về return TenHamY(Thamso) TenHamX(Thamso); giống nhau hoặc khác } nhau
  17. X(n) = 1,2,3,5,11,41 Ví dụ Y(n) = 1,1,2,6,30,330 void main() { int n; printf("\n Nhap n = "); scanf("%d",&n); printf( "\n X = %d " ,X(n)); printf( "\n Y = %d " , Y(n)); getch(); } long Y(int n); //prototype cua ham y long X(int n) { if(n==0) return 1; else return X(n-1) + Y(n-1); } long Y(int n) { if(n==0) return 1; else return X(n-1)*Y(n-1); }
  18. Tìm giải thuật đệ quy 1. Thông số hóa bài toán . ▫ Tổng quát hóa bài toán cụ thể cần giải thành bài toán tổng quát (một họ các bài toán chứa bài toán cần giải ) ▫ Tìm ra các thông số cho bài toán tổng quát ▸ các thông số điều khiển: các thông số mà độ lớn của chúng đặc trưng cho độ phức tạp của bài toán , và giảm đi qua mỗi lần gọi đệ quy. ▸ Vídụ ▸ n trong hàm FAC(n) ; ▸ a , b trong hàm USCLN(a,b) .
  19. Tìm giải thuật đệ quy 2. Tìm các trường hợp neo cùng giải thuật giải tương ứng ▫ trường hợp suy biến của bài toán tổng quát ▫ các trường hợp tương ứng với các gía trị biên của các biến điều khiển ▫ VD: FAC(1) =1 USCLN(a,0) = a 3. Tìm giải thuật giải trong trường hợp tổng quát bằng phân rã bài toán theo kiểu đệ quy
  20. Tìm giải thuật đệ quy ▪ Phân rã bài toán tổng quát theo phương thức đệ quy ▫ Tìm phương án (giải thuật ) giải bài toán trong trường hợp tổng quát phân chia nó thành các thành phần ▸ giải thuật không đệ quy ▸ bài toán trên nhưng có kích thước nhỏ hơn. ▫ Vídụ FAC(n) = n * FAC(n -1) . Tmax(a[1:n]) = max(Tmax(a[1:(n-1)]) , a[n] )
  21. Bài toán Tháp Hà Nội ▪ Luật: ▫ Di chuyển mỗi lần một đĩa ▫ Không được đặt đĩa lớn lên trên đĩa nhỏ n Với chồng gồm n đĩa cần 2 -1 lần chuyển –Giả sử thời gian để chuyển 1 đĩa là t giây thì thời gian để chuyển xong chồng 64 đĩa sẽ là: –T = ( 2^64-1) * t = 1.84 * 10^19 t –Với t = 1/100 s thì T = 5.8*10^9 năm = 5.8 tỷ năm .
  22. Bài toán Tháp Hà Nội ▪ Hàm đệ quy: Chuyển n đĩa từ A sang C qua trung gian B ▫ Chuyển n-1 đĩa trên đỉnh của cột A sang cột B ▫ Chuyển 1 đĩa (cuối cùng) của cột A sang cột C ▫ Chuyển n-1 đĩa từ cột B sang C qua tg A magic
  23. Bài toán Tháp Hà Nội ▪ Thông số hóa bài toán ▫ Xét bài toán ở mức tổng quát nhất: chuyển n (n>=0) đĩa từ cột A sang cột C lấy cột B làm trung gian . ▫ THN(n,A,B,C) -> với 64 đĩa gọi THN(64,A,B,C) ▫ n sẽ là thông số quyết định bài toán –n là tham số điều khiển ▪ Trường hợp suy biến và cách giải ▫ Với n =1 : THN (1,A,B,C) Giải thuật giải bt THN (1,A,B,C) là thực hiện chỉ 1 thao tác cơ bản: Chuyển 1 đĩa từ A sang C (ký hiệu là Move (A , C)) ▸ THN(1,A,B,C) ≡ { Move( A, C ) } ▸ THN(0,A,B,C) ≡ { φ}
  24. Bài toán Tháp Hà Nội ▪ Bài toán THN (k,A,B,C): chuyển k đĩa từ cột A sang cột C lấy cột B làm trung gian 1. Chuyển (k -1) đĩa từ cột A sang cột B lấy cột C làm trung gian THN (k -1,A,C,B) (bài toán THN với n = k-1,A= A , B = C , C = B ) 2. Chuyển 1 đĩa từ cột A sang cột C : Move ( A, C ) (thao tác cơ bản ). 3. Chuyển (k - 1 ) đĩa từ cột B sang cột C lấy cột A làm trung gian THN( k -1,B,A,C) ( bài toán THN với n = k-1 , A = B , B = A , C = C )
  25. Giải thuật tổng quát Với n>1 THN(n,A,B,C) ≡ { THN (n -1,A,C,B) ; Move ( A, C ) ; THN (n -1,B,A,C) ; }
  26. Code void move(int n, int A, int B, int C) { if (n > 0) { move(n − 1, A, C, B); printf("\n Move disk % d from %c to % c ", n, A,C ); move(n − 1, B, A, C); } }
  27. Bài toán chia phần thưởng ▪ Có 100 phần thưởng đem chia cho 12 học sinh giỏi đã được xếp hạng. Có bao nhiêu cách khác nhau để thực hiện cách chia? ▪ Tìm giải thuật giải bài toán bằng phương pháp đệ quy.
  28. Bài toán chia phần thưởng ▪ Nhìn góc độ bài toán tổng quát: Tìm số cách chia m vật (phần thưởng) cho n đối tượng (học sinh ) có thứ tự. ▫ PART(m ,n) ▫ N đối tượng đã được sắp xếp 1,2, ,n ▫ Si là số phần thưởng mà i nhận được Si>= 0 S1>= S2>= >= Sn. S1+ S2+ + Sn = m ▫ Ví dụ: Với m = 5 , n = 3 ta có 5 cách chia sau : 5 0 0 ,4 1 0, 3 2 0 ,3 1 1 ,2 2 1 Tức là PART(5,3) = 5
  29. Bài toán chia phần thưởng ▪ Các trường hợp suy biến ▫ m = 0 : mọi học sinh đều nhận được 0 phần thưởng . PART(0 , n ) = 1 với mọi n ▫ n = 0 , m 0 .
  30. Bài toán chia phần thưởng ▪ Phân rã bài toán trong trường hợp tổng quát ▫ m m thìPART(m , n ) = PART(m , m ) ▫ m>=n: là tổng ▸ Học sinh cuối cùng không có phần thưởng ▸ PART(m , n -1 ) ▸ Học sinh cuối cùng có ít nhất 1 ▸ PART(m -n , n ) ▸ Vậy: m > n => PART(m , n ) = PART(m , n -1 ) + PART(m -n , n )
  31. Bài toán chia phần thưởng ▪ Dạng hàm PART trong C++ int PART(int m, int n) { if ((m == 0) || (n == 0) ) return 1 ; else if(m < n) return (PART(m, m)); else return (PART(m, n -1) + PART(m -n, n)); } ▪ Kết quả sai?
  32. Khử đệ quy Đệ quy o Ưu điểm: gọn gàng, dễ hiểu, dễ viết code o Nhược điểm: tốn không gian nhớ và thời gian xử lý Thay thế bằng giải thuật không đệ quy
  33. Khử đệ quy ▪ Sơ đồ để xây dựng chương trình cho một bài toán khó khi ta không tìm được giải thuật không đệ quy thường là: ▫ Dùng quan niệm đệ quy để tìm giải thuật cho bài toán . ▫ Mã hóa giải thuật đệ quy. ▫ Khử đệ quy để có được một chương trình không đệ quy . ▪ Tuy nhiên, khử đệ quy không phải bao giờ cũng dễ => trong nhiều trường hợp ta cũng phải chấp nhận sử dụng chương trình đệ quy
  34. Khử đệ quy bằng vòng lặp ▪ Giải thuật hồi qui thường gặp f(n) = C khi n = no (C là một hằng) = g(n,f(n -1)) khi n > no ▪ Ví dụ: ▫ Hàm giai thừa FAC (n) = n! = 1 khi n=0 = n*FAC(n -1) khi n>0 ▫ Tổng n số đầu tiên của dãy đan dấu sau : Sn = 1 -3 + 5 -7 + (-1)^(n+1) * (2n-1) S(k) = 1 khi k =1 = S(k-1) + (-1)^(k+1)*(2*k-1) với k > 1
  35. Khử đệ quy bằng vòng lặp ▪ Giải thuật đệ quy tính giá trị f(n) f(n) ≡ if(n == no) return C; else return (g(n,f(n -1)); ▪ Giải thuật lặp tính giá trị f(n) K = no; F:= C; { F = f(no) } While( k < n ){ k += 1; F = g(k,F); } return F;
  36. ▪ Khử đệ quy với hàm tính giai thừa int FAC ( int n ) { int k = 0; int F = 1; while ( k < n ) F = ++k * F; return (F); } ▪ Khử đệ quy với hàm tính S(n) int S ( int n ) { int k = 1 , tg = 1 ; while ( k < n ) { k ++ ; if (k%2 == 1) tg + = 2 * k -1; else tg -= 2 * k + 1 ; } return ( tg ) ; }
  37. Đệ quy dạng đệ quy đuôi ▪ Xét thủ tục P dạng P(X) ≡ if B(X) then D(X) else { A(X) ; P(f(X)) ; } ▪ Trong đó: ▫ X là tập biến (một hoặc một bộ nhiều biến) ▫ P(X) là thủ tục đệ quy phụ thuộc X ▫ A(X); D(X) là các thao tác không đệ quy ▫ f(X) là hàm biến đổi X
  38. Đệ quy dạng đệ quy đuôi ▪ Xét quá trình thi hành P(X) : ▫ gọi Po là lần gọi P thứ 0 (đầu tiên) P(X) ▫ P1 là lần gọi P thứ 1 (lần 2) P(f(X)) ▫ Pi là lần gọi P thứ i (lần i + 1) P(f(f( f(X) ) ▫ ( P(fi(X)) hợp i lần hàm f ) ▪ Gọi Pi nếu B(fi(X)) ▫ (false) { A và gọi Pi+1 } ▫ (true) { D } ▪ Giả sử P được gọi đúng n +1 lần . Khi đó ở trong lần gọi cuối cùng (thứ n ) Pn thì B(fn(X)) = true, lệnh D được thi hành và chấm dứt thao tác gọi thủ tục P
  39. ▪Sơ đồ thực hiện giải thuật trên Đệ quy dạng bằng vòng lặp đệ quy đuôi While (!B(X)) { A(X); X = f(X); } D(X);
  40. Ví dụ Tìm ước chung lớn nhất Giải thuật đệ quy Khử đệ quy int USCLN(int m, int n) { int USCLN(int m , int n ) if (n == 0) return m; { else USCLN(n, m % n); while(n != 0 ) { } int sd = m % n ; m = n ; ▪X là( m , n ) n = sd ; ▪P(X) là USCLN(m ,n) } ▪B(X) là n == 0 ▪D(X) là lệnh return m return (m) ; ▪A(X) là lệnh rỗng } ▪f(X ) là f(m,n) = ( n , m mod n )
  41. Khử đệ quy bằng stack ▪ Trạng thái của tiến trình xử lý một giải thuật: nội dung các biến và lệnh cần thực hiện kế tiếp. ▪ Với tiến trình xử lý một giải thuật đệ quy ở từng thời điểm thực hiện, cần lưu trữ cả các trạng thái xử lý đang còn dang dở ▪ Xét giải thuật giai thừa FAC ( n ) ≡ if(n = 0 ) then return 1; else return ( n * FAC (n –1)); ▪ Sơ đồ thực hiện
  42. Thủ tục đệ quy tháp Hà Nội THN (n , A , B , C) THN (n : integer ; A ,B , C : char) ≡ { if (n > 0 ) then { THN(n-1,A ,C ,B); Move(A, C); THN(n-1,B,A,C);} } Sơ đồ thực hiện THN(3,A,B,C)
  43. Khử đệ quy bằng stack ▪ Lời gọi đệ quy sinh ra lời gọi đệ quy mới cho đến khi gặp trường hợp suy biến (neo) ▪ Ở mỗi lần gọi, phải lưu trữ thông tin trạng thái con dang dở của tiến trình xử lý ở thời điểm gọi. Số trạng thái này bằng số lần gọi chưa được hoàn tất. ▪ Khi thực hiện xong (hoàn tất) một lần gọi, cần khôi phục lại toàn bộ thông tin trạng thái trước khi gọi . ▪ Lệnh gọi cuối cùng (ứng với trương hợp neo) sẽ được hoàn tất đầu tiên ▪ Cấu trúc dữ liệu cho phép lưu trữ dãy thông tin thỏa 3 yêu cầu trên là cấu trúc lưu trữ thỏa mãn LIFO (Last In First Out ~ Cấu trúc stack) Chủ động tạo cấu trúc stack chuyên dụng
  44. Đệ quy chỉ có một lệnh gọi trực tiếp ▪ Đệ quy có dạng sau: P(X) ≡ if C(X) then D(X) else begin A(X) ; P(f(X)) ; B(X) ; end; ▫ X là một biến đơn hoặc biến véc tơ. ▫ C(X) là một biểu thức boolean của X . ▫ A(X) , B(X) , D(X): không đệ quy ▫ f(X) là hàm của X
  45. Đệ quy chỉ có một lệnh gọi trực tiếp ▪ Giải thuật thực hiện P(X) với việc sử dụng Stack có dạng P(X) ≡ { Create_Stack (S); ( tạo stack S ) While(not(C(X)) do begin A(X); Push(S,X); ( cất gía trị X vào stack S ) X := f(X); end; D(X); While(not(EmptyS(S))) do begin POP(S,X); ( lấy dữ liệu từ S ) B(X); end; }
  46. Ví dụ Chuyển từ cơ số thập phân sang nhị phân Đệ quy Khử đệ quy Binary(m) ≡ if ( m > 0 ) Binary (m) ≡ { then begin Create_Stack(S); Binary( m / 2 ) ; While ( m > 0 ) do begin write( m % 2 ) ; sdu = m % 2 ; end; Push(S,sdu) ; m = m / 2 ; Trong đó end; ▫X là m . While(not(EmptyS(S)) do begin ▫P(X) là Binary(m) . POP(S,sdu) ; ▫A(X) ; D(X) là lệnh rỗng . Write(sdu) ; ▫B(X) là lệnh Write(m % 2 ) ; end; ▫C(X) là ( m <= 0 ) . ▫f(X) = f(m) = m / 2 }
  47. Đệ quy với 2 lần gọi đệ quy ▪ Đệ quy có dạng sau P(X) ≡ if C(X) then D(X) else begin A(X); P(f(X)); B(X); P(g(X)); end;
  48. Đệ quy với 2 lần gọi đệ quy ▪ Thuật toán khử đệ quy tương ứng với thủ tục đệ quy P(X) ≡ { Create_Stack (S) : Push (S, (X,1)) ; Repeat While ( not C(X) ) do begin A(X) ; Push (S, (X,2)) ; X := f(X) ; end; D(X) ; POP (S, (X,k)) ; if ( k <> 1) then begin B(X) ; X := g(X) ; end; until ( k = 1 ) ; }
  49. Ví dụ Bài toán Tháp Hà Nội Đệ quy Khử đệ quy THN(n,X,Y,Z) ≡ if(n > 0) THN { { Create_Stack (S) ; THN (n - 1, X, Z, Y); Push (S ,(n,X,Y,Z,1)) ; Move (X, Z ); Repeat THN (n - 1, Y, X, Z); While (n > 0) do begin } Push (S ,(n,X,Y,Z,2)) ; n = n - 1; Trong đó Swap (Y,Z) ; ▫Biến X là bộ (n,X,Y,Z) end ; ▫C(X) là n 1 ) then begin ▫B(X) = B(n,X,Y,Z) là move(X, Z) ▫f(X) = f(n,X,Y,Z) = (n-1,X,Z,Y) Move (X ,Z ) ; ▫g(X) = g(n,X,Y,Z) = (n-1,Y,X,Z) n = n - 1 ; Swap (X,Y) ; end ; until ( k == 1 ) ; }
  50. Cho dãy số Ví dụ 1,2,3,7,14,27,55,110,219 Viết hàm đệ quy tính số hạng thứ n của dãy số (n > 2 nhập từ bàn phím), rồi tính tổng các số hạng của dãy Sau đó, khử đệ quy chương trình trên