Tổng quan về WIMAX

doc 95 trang hoanguyen 4090
Bạn đang xem 20 trang mẫu của tài liệu "Tổng quan về WIMAX", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • doctong_quan_ve_wimax.doc

Nội dung text: Tổng quan về WIMAX

  1. 1 TỔNG QUAN VỀ WIMAX GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  2. 2 CHƯƠNG 1: TỔNG QUAN VỀ WIMAX 1.1) Giới thiệu chung về WIMAX 1.1.1) Khái niệm WIMAX - Worldwide Interoperability for Microwave Access: là một mạng không dây băng thông rộng có tính tương tác toàn cầu dựa trên cơ sở tiêu chuẩn kỹ thuật IEEE 802.16-2004. Tiêu chuẩn này do hai tổ chức quốc tế đưa ra: Tổ công tác 802.16 trong ban tiêu chuẩn IEEE 802, và Diễn đàn WIMAX. WIMAX sử dụng kỹ thuật sóng vô tuyến để kết nối các máy tính trong mạng Internet thay vì dùng dây để kết nối như DSL hay cáp modem. WiMax như một tổng đài trong vùng lân cận hợp lý đến một trạm chủ mà nó được yêu cầu thiết lập một đường dữ liệu đến Internet. Người sử dụng trong phạm vi từ 3 đến 5 dặm so với trạm chủ sẽ được thiết lập một đường dẫn công nghệ NLOS (Non-Line-Of- Sight) với tốc độ truyền dữ liệu rất cao là 75Mbps. Còn nếu người sử dụng trong phạm vi lớn hơn 30 dặm so với trạm chủ thì sẽ có anten sử dụng công nghệ LOS (Line-Of-Sight) với tốc độ truyền dữ liệu gần bằng 280Mbps. WIMAX là một chuẩn không dây đang phát triển rất nhanh, hứa hẹn tạo ra khả năng kết nối băng thông rộng tốc độ cao cho cả mạng cố định lẫn mạng không dây di động, phạm vi phủ sóng được mở rộng. WIMAX là mạng không dây phủ sóng một vùng rộng lớn, thuận tiện cho việc triển khai mạng nhanh, thuận lợi và có lợi ích kinh tế cao so với việc kéo cáp, đặc biệt là vùng có địa hình phức tạp. Vì vậy, mạng truy nhập không dây băng rộng WIMAX sẽ đáp ứng được các chương trình phổ cập Internet ở các vùng sâu, vùng xa, nơi có mật độ dân cư thưa. Đối với các vùng mật độ dân cư vừa phải (ngoại vi các thành phố lớn nơi đòi hỏi cung cấp đa dịch vụ với chất lượng được đảm bảo) thì việc triển khai WIMAX để cung cấp các dịch vụ đa phương tiện sẽ nhanh và có hiệu quả kinh tế cao hơn và với việc cung cấp băng thông rộng sẽ đáp ứng được các yêu cầu về chất lượng. WIMAX có những ưu thế vượt trội so với các công nghệ cung cấp dịch vụ băng thông rộng hiện nay về tốc độ truyền dữ liệu và giá cả thấp do cung cấp các dịch vụ trên nền IP. Với khả năng truy nhập từ xa, tốc độ dữ liệu cao đáp ứng GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  3. 3 đa dạng các dịch vụ như Internet tốc độ cao, thoại qua IP, video luồng/chơi game trực tuyến cùng với các ứng dụng cộng thêm cho doanh nghiệp như hội nghị video và giám sát video, mạng riêng ảo bảo mật 1.1.2) Sự đi lên từ Wifi đến WIMAX Trên thực tế, trong thời gian qua, với sự ra đời của Wifi đã làm thay đổi cách thức trao đổi thông tin của người sử dụng.Tuy nhiên, do Wifi là công nghệ được thiết kế hướng tới các mạng LAN kh dây, chính vì vậy trong những trượng hợp cụ thể, khi áp dụng công nghệ này cho mạng MAN, thì nó đã bộc lộ rất nhiều những hạn chế. Trước hết Wifi được thiết kế cho mạng ít thuê bao,kênh truyền của nó cố định kích thước khoảng 20Mhz, do vậy rất kém linh hoạt. Bên cạnh đó, Wifi không hỗ trợ kiến trúc Mesh, một kiến trúc đảm bảo sự liên thông tốt trong mạng đô thị.Hơn nữa, nếu ta truyền trong môi trường tốt, ít nhiễu, tầm nhìn thẳng ( LOS ), dụng các Anten định hướng với công suất đủ lớn thì Wifi cũng chỉ đạt tới khoảng cách vài km, rất hạn chế cho việc phủ song trong một pham vi lớn Sự ra đời của WIMAX đã khắc phục được những nhược điểm trên của Wifi. Hiện nay, Wimax được xem là một giải pháp toàn diện của công nghệ không dây băng rộng trong đô thị, ngoại ô và những vùng nông thôn xa xôi hẻo lánh WIMAX cho phép truyền không dây các loại dữ liệu, hình ảnh, âm thanh nhanh hơn cả DSL hay cáp, và tất nhiên là nhanh hơn nhiều lần các công nghệ không dây hiện hành như 802.11a hay 802.11b mà không yêu cầu điều kiện truyền thẳng. WIMAX là một giải pháp tuyệt vời về mặt công nghệ kết nối nhưng sẽ cần một chi phí lớn phải bỏ ra để phát triển hạ tầng cho một hệ thống mới trong khi hệ thống cũ vẫn còn chưa được sử dụng hết. Quả thực, nếu phải đầu tư một khoản kinh phí để triển khai WIMAX trên một quy mô lớn trong khi công nghệ 3G vẫn là tiềm năng chưa khai thác hết thì chắc chắn các công ty viễn thông sẽ phải tính toán và cân nhắc hết sức kỹ lưỡng trước khi bỏ tiền đầu tư cho việc phát triển dịch vụ này. Vì vậy WIMAX sẽ là công nghệ của tương lai. 1.2) Các đặc tính công nghệ WIMAX GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  4. 4 QoS Triển khai nhanh Vùng phủ rộng Tính di động Bảo mật cao WiMAX SLA Khả năng mang theo được Dung lượng cao Kiến trúc mềm dẻo Chi phí thấp Hình 1.1: Các đặc tính của WIMAX 1.2.1) Kiến trúc mềm dẻo WIMAX hỗ trợ một vài kiến trúc hệ thống, bao gồm điểm tới điểm, điểm tới đa điểm, và bao phủ khắp nơi. MAC (điều khiển truy nhập phương tiện) WIMAX hỗ trợ điểm tới đa điểm và các dịch vụ ở khắp nơi bằng cách sắp xếp một khe thời gian cho mỗi trạm thuê bao (SS). Nếu chỉ có một SS trong mạng, thì trạm gốc WIMAX sẽ thông tin với SS trên cơ sở điểm tới điểm. Một BS trong cấu hình điểm tới điểm có thể sử dụng một anten búp hẹp hơn để phủ các vùng lớn hơn. 1.2.2) Bảo mật cao WIMAX hỗ trợ ASE (chuẩn mật mã hoá tiên tiến) và 3DES (chuẩn mật mã hoá số liệu). Bằng cách mật mã hoá các liên kết giữa BS và SS, WIMAX phục vụ các thuê bao tách biệt (chống nghe trộm) và bảo mật trên giao diện không dây băng rộng. Bảo mật cũng cung cấp cho các nhà khai thác hệ thống an ninh chống ăn trộm dịch vụ. WIMAX cũng được xây dựng hỗ trợ VLAN, mà cung cấp bảo vệ dữ liệu được truyền từ các người sử dụng khác nhau trên cùng một BS. 1.2.3) Triển khai nhanh So với sự triển khai của các giải pháp dây, WIMAX yêu cầu ít hoặc không yêu cầu xây dựng kế hoạch mở rộng. Ví dụ, đào hố để hỗ trợ rãnh của các cáp không được GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  5. 5 yêu cầu. Các nhà khai thác có giấy phép để sử dụng một trong số các băng tần được cấp phát, hoặc có kế hoạch để sử dụng một trong các băng tần không được cấp phép, không cần thiết xem xét sâu hơn các ứng dụng cho chính phủ. Khi anten và thiết bị được lắp đặt và được cấp nguồn, WIMAX sẽ sẵn sàng phục vụ. Trong hầu hết các trường hợp, triển khai WIMAX có thể hoàn thành trong khoảng mấy giờ, so với mấy tháng cho các giải pháp khác. 1.2.4) QOS WIMAX WIMAX có thể được tối ưu hoá hỗn hợp lưu lương được mang. Bốn loại dịch vụ được hỗ trợ như trong bảng 1.2. 1.2.5) Dung lượng cao: Sử dụng điều chế bậc cao (64-QAM) và độ rộng băng tần (hiện tại là 7 MHz), các hệ thống WIMAX có thể cung cấp độ rộng băng tần đáng kể cho các người sử dụng đầu cuối. 1.2.6) Độ bao phủ rộng hơn: WIMAX hỗ trợ các điều chế đa mức, bao gồm BPSK, QPSK, 16-QAM, và 64- QAM. Khi được trang bị với một bộ khuyếch đại công suất lớn và hoạt động với điều chế mức thấp (ví dụ, BPSK hoặc QPSK), các hệ thống WIMAX có thể bao phủ một vùng địa lý rộng khi đường giữa BS và SS thông suốt. Loại dịch vụ Mô tả Dịch vụ cấp tự UGS được thiết kế để hỗ trợ các luồng dữ liệu thời nguyện (UGS) gian thực bao gồm các gói số liệu kích thước cố định được phát ra tại các khoảng tuần hoàn, như T1/E1 và thoại trên nền IP Dịch vụ kiểm soát rtNS được thiết kế để hỗ trợ các luồng dữ liệu thời vòng thời gian thực gian thực bao gồm các gói số liệu kích thước thay đổi (rtPS) mà được phát ra tại các khoảng tuần hoàn, như MPEG video Dịch vụ kiểm soát nrtPS được thiết kế để hỗ trợ các luồng số liệu dung vòng phi thời gian sai trễ bao gồm các gói số liệu kích thước thay đổi mà GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  6. 6 thực (nrtPS) yêu cầu tốc độ số liệu tối thiểu, như FTP. Best Effort (BS) Dịch vụ BS được thiết kế để hỗ trợ các luồng số liệu nỗ lực tối đa mà không yêu cầu mức dịch vụ tối thiểu và có thể xử lý trên cơ sở giá trị không gian. Bảng 1.2: Các loại dịch vụ của WIMAX 1.2.7) Dung lượng cao Sử dụng điều chế bậc cao (64-QAM) và độ rộng băng tần (hiện tại là 7 MHz), các hệ thống WIMAX có thể cung cấp độ rộng băng tần đáng kể cho các người sử dụng đầu cuối. 1.2.8) Độ bao phủ rộng hơn WIMAX hỗ trợ các điều chế đa mức, bao gồm BPSK, QPSK, 16-QAM, và 64- QAM. Khi được trang bị với một bộ khuyếch đại công suất lớn và hoạt động với điều chế mức thấp (ví dụ, BPSK hoặc QPSK), các hệ thống WiMAX có thể bao phủ một vùng địa lý rộng khi đường giữa BS và SS thông suốt. 1.2.9) Mang lại lợi nhuận WIMAX dựa trên chuẩn quốc tế mở. Chuẩn được thông qua đa số, sử dụng chi phí thấp, các chipset được sản xuất hàng loạt, sẽ làm cho giá hạ xuống; và cạnh tranh giá cả làm cho các nhà cung cấp dich vụ, người sử dụng đầu cuối tiết kiệm được chi phí. 1.2.10) Dịch vụ đa mức Là loại mà QoS đạt được dựa vào hợp đồng mức dịch vụ (SLA) giữa nhà cung cấp dịch vụ và người sử dụng. Hơn nữa, một nhà cung cấp dịch vụ có thể đưa ra các SLA khác nhau cho những người đăng ký khác nhau, hoặc thậm chí cho những người sử dụng khác nhau trong cùng một SS. 1.2.11) Khả năng cùng vận hành WIMAX dựa vào các chuẩn cung cấp trung lập, quốc tế, làm cho người sử dụng đầu cuối dễ dàng truyền tải và sử dụng SS của họ tại các vị trí khác nhau, hoặc với các nhà cung cấp dịch vụ khác nhau. Khả năng cùng vận hành bảo vệ vốn đầu tư GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  7. 7 ban đầu của nhà khai thác vì nó có thể chọn thiết bị từ các đại lý thiết bị khác nhau, và nó sẽ tiếp tục làm giảm giá thiết bị. 1.2.12) Khả năng mang theo được Với các hệ thống tổ ong hiện nay, khi SS WIMAX được cấp nguồn, nó tự nhận dạng, xác định các đặc tính của liên kết với BS, chỉ cần SS được đăng ký trong cơ sở dữ liệu hệ thống, và sau đó đàm phán các đặc tính truyền dẫn phù hợp. 1.2.13) Tính di động Chuẩn IEEE 802.16e được thêm một số đặc điểm chủ yếu trong việc hỗ trợ tính di động. Các cải tiến được tạo ra cho lớp vật lý OFDMA và OFDM để cung cấp các thiết bị và dịch vụ trong môi trường di động. Các môi trường này bao gồm: OFDMA có thể chia tỷ lệ được, MIMO, và hỗ trợ chế độ idle/sleep, chuyển giao, cho phép tính di động hoàn toàn tại tốc độ 160 km/h. Chuẩn hỗ trợ bởi Forum WIMAX được thừa hưởng hiệu năng NLOS (tầm nhìn không thẳng) tốt hơn của OFDM và hoạt động chịu được đa đường, làm cho nó phù hợp hơn với môi trường di động. 1.2.14) Hoạt động tầm nhìn không thẳng NLOS thường ám chỉ đường dẫn vô tuyến có miền Fresnel thứ nhất bị chặn hoàn toàn. WIMAX dựa vào công nghệ OFDM đã có sẵn khả năng xử lý các môi trường NLOS. Dung lượng này giúp các sản phẩm WIMAX phân phát độ rộng băng tần rộng trong môi trường NLOS, mà các sản phẩm vô tuyến khác không làm được. Mô tả lớp Thời gian thực Loại ứng dụng Độ rộng băng tần Trò chơi tương tác Có Trò chơi tương tác 50-85 kbps VoIP, Hội thảo VoIP 4-64 kbps Có video Điện thoại hình 32-384 kbps Nhạc/thoại 5-128 kbps Luồng Media Có Các đoạn video 20-384 kbps Phim >2Mbps Bản tin tức thời 500 kbps tin Email >500 kbps GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  8. 8 Tải nội dung truyền Dữ liệu lớn, tải phim >1 Mbps thông (lưu trữ và Không Ngang hàng >500 kbps chuyển tiếp) Bảng 1.3: Các ứng dụng trong WIMAX 1.3) Hai mô hình ứng dụng WIMAX 1.3.1) Mô hình ứng dụng cố định (Fixed WIMAX ) Mô hình cố định sử dụng các thiết bị theo tiêu chuẩn IEEE.802.16-2004. Tiêu chuẩn này gọi là “không dây cố định” vì thiết bị thông tin làm việc với các anten đặt cố định tại nhà các thuê bao. Anten đặt trên nóc nhà hoặc trên cột tháp tương tự như chảo thông tin vệ tinh. Hình 1.4: Mô hình mạng WIMAX cố định Trong mạng cố định, WIMAX thực hiện cách tiếp nối không dây đến các modem cáp, đến các đôi dây thuê bao của mạch xDSL hoặc mạch Tx/Ex (truyền phát/chuyển mạch) và mạch OC-x (truyền tải qua sóng quang). WIMAX cố định có thể phục vụ cho các loại người dùng (user) như: các xí nghiệp, các khu dân cư nhỏ lẻ, mạng cáp truy nhập WLAN công cộng nối tới mạng đô thị, các trạm gốc BS của mạng thông tin di động và các mạch điều khiển trạm BS. Về cách phân bố theo địa GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  9. 9 lý, các user thì có thể phân tán tại các địa phương như nông thôn và các vùng sâu vùng xa khó đưa mạng cáp hữu tuyến đến đó. 1.3.2) Mô hình ứng dụng WIMAX di động Mô hình WIMAX di động sử dụng các thiết bị phù hợp với tiêu chuẩn 802.16e bổ sung cho tiêu chuẩn IEEE 802.16 – 2004 hướng tới các user cá nhân di động, làm việc trong băng tần thấp hơn 6 GHz. Mạng lưới này phối hợp cùng WLAN, mạng di động cellular 3G có thể tạo thành mạng di động có vùng phủ sóng rộng. Chuẩn WIMAX được phát triển mang lại một phạm vi rộng các ứng dụng. Hình 1.5: Mô hình ứng dụng WIMAX di động Hai phần chính của hệ thống WIMAX gồm: - Trạm gốc WIMAX : Đây là phần thiết bị giao tiếp với các hệ thống cung cấp dịch vụ mạng lõi bằng cáp quang, hoặc kết hợp các tuyến vi ba điểm - điểm kết nối với các nút quang hoặc qua các đường thuê riêng từ các nhà cung cấp dịch vụ hữu tuyến. Các dịch vụ được chuyển đổi qua anten trạm gốc kết nối với các thiết bị đầu cuối WIMAX CPE qua môi trường vô tuyến. - Thiết bị đầu cuối CPE WIMAX : trong hầu hết các trường hợp, một đầu cuối “plug and play” đơn giản, tương tự với modem DSL, cung cấp khả năng kết nối. Đối với những khách hàng được đặt ở vị trí vài km từ trạm gốc WIMAX , một anten bên ngoài tự cài đặt có thể được yêu cầu để cải thiện chất lượng truyền dẫn. Để phục vụ các khách hàng ở biệt lập, một anten chỉ dẫn trỏ đến trạm gốc WIMAX GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  10. 10 có thể được yêu cầu. Với các khách hàng yêu cầu thoại thêm vào các dịch vụ băng rộng, CPE cụ thể sẽ cho phép kết nối bình thường hoặc các cuộc gọi điện thoại VoIP. Cuối cùng thì chip WIMAX sẽ được nhúng trong các thiết bị trung tâm dữ liệu. 1.4) CÁC CHUẨN CỦA WIMAX 1.4.1) Chuẩn IEEE 802.16 - 2001 Chuẩn IEEE 802.16-2001 được hoàn thành vào tháng 10/2001 và được công bố vào 4/2002, định nghĩa đặc tả kỹ thuật giao diện không gian WirelessMAN™ cho các mạng vùng đô thị. Đặc điểm chính của IEEE 802.16 – 2001: Giao diện không gian cho hệ thống truy nhập không dây băng rộng cố định họat động ở dải tần 10 – 66 GHz, cần thỏa mãn tầm nhìn thẳng. - Lớp vật lý PHY: WirelessMAN-SC. - Tốc độ bit: 32 – 134 Mbps với kênh 28 MHz. - Điều chế QPSK, 16 QAM và 64 QAM. - Các dải thông kênh 20 MHz, 25 MHz, 28 MHz. - Bán kính cell: 2 – 5 km. - Kết nối có định hướng, MAC TDM/TDMA, QoS, bảo mật. 1.4.2) Chuẩn IEEE 802.16a Vì những khó khăn trong triển khai chuẩn IEEE 802.16, hướng vào việc sử dụng tần số từ 10 – 66 GHz, một dự án sửa đổi có tên IEEE 802.16a đã được hoàn thành vào tháng 11/2002 và được công bố vào tháng 4/2003. Chuẩn này được mở rộng hỗ trợ giao diện không gian cho những tần số trong băng tần 2–11 GHz, bao gồm cả những phổ cấp phép và không cấp phép và không cần thoả mãn điều kiện tầm nhìn thẳng. Đặc điểm chính của IEEE 802.16a như sau: - Bổ sung 802.16, các hiệu chỉnh MAC và các đặc điểm PHY thêm vào cho dải 2 – 11 GHz (NLOS). - Tốc độ bit: tới 75Mbps với kênh 20 MHz. - Điều chế OFDMA với 2048 sóng mang, OFDM 256 sóng mang, QPSK, 16 QAM, 64 QAM. - Dải thông kênh có thể thay đổi giữa 1,25MHz và 20MHz. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  11. 11 - Bán kính cell: 6 – 9 km. - Lớp vật lý PHY: WirelessMAN-OFDM, OFDMA, SCa. - Các chức năng MAC thêm vào: hỗ trợ PHY OFDM và OFDMA, hỗ trợ công nghệ Mesh, ARQ. 1.4.3) Chuẩn IEEE 802.16 - 2004 Tháng 7/2004, chuẩn IEEE 802.16 – 2004 hay IEEE 802.16d được chấp thông qua, kết hợp của các chuẩn IEEE 802.16 – 2001, IEEE 802.16a, ứng dụng LOS ở dải tần số 10 - 66 GHz và NLOS ở dải 2 - 11 GHz. Khả năng vô tuyến bổ sung như là “beam forming” và kênh con OFDM. 1.4.4) Chuẩn IEEE 802.16e Đầu năm 2005, chuẩn không dây băng thông rộng 802.16e với tên gọi Mobile WIMAX đã được phê chuẩn, cho phép trạm gốc kết nối tới những thiết bị đang di chuyển. Chuẩn này giúp cho các thiết bị từ các nhà sản xuất này có thể làm việc, tương thích tốt với các thiết bị từ các nhà sản xuất khác. 802.16e họat động ở các băng tần nhỏ hơn 6 GHz, tốc độ lên tới 15 Mbps với kênh 5 MHz, bán kính cell từ 2 – 5 km. WIMAX 802.16e có hỗ trợ handoff và roaming. Sử dụng SOFDMA, một công nghệ điều chế đa sóng mang. Các nhà cung cấp dịch vụ mà triển khai 802.16e cũng có thể sử dụng mạng để cung cấp dịch vụ cố định. 802.16e hỗ trợ cho SOFDMA cho phép số sóng mang thay đổi, ngoài các mô hình OFDM và OFDMA. Sự phân chia sóng mang trong mô hình OFDMA được thiết kế để tối thiểu ảnh hưởng của nhiễu phía thiết bị người dùng với anten đa hướng. Cụ thể hơn, 802.16e đưa ra hỗ trợ cải tiến hỗ trợ MIMO và AAS, cũng như các handoff cứng và mềm. Nó cũng cải tiến các khả năng tiết kiệm công suất cho các thiết bị di động và các đặc điểm bảo mật linh hoạt hơn 802.16 802.16-2004 802.16-2005 Hoàn thiện vào Hoàn thiện vào tháng 6- Hoàn thiện vào tháng 12- Tình trạng tháng 12-2001 2004 2005 GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  12. 12 2-11 GHz cho cố định; Dải tần 10-66 GHz 2-11 GHz 2-6 GHz cho di động Cố định, tầm nhìn Cố định, không nhìn thẳng Cố định và di động, không Ứng dụng thẳng (LOS) (NLOS) nhìn thẳng (NLOS) Cấu trúc Điểm – đa điểm, Điểm – đa điểm, mạng Điểm – đa điểm, mạng lưới lớp MAC mạng lưới lưới Mô hình Đơn sóng mang, 256 OFDM Đơn sóng mang, 256 truyền Đơn sóng mang hoặc S-OFDM với 128, 512, OFDM, 2048 OFDM sóng 1024, 2048 sóng mang con. QPSK, 16QAM, Điều chế QPSK, 16QAM, 64QAM QPSK, 16QAM, 64QAM 64QAM Tổng tần 32-134.4 Mbps 1-75 Mbps 1-75 Mbps số dữ liệu Ghép Khối Khối Khối TDM/TDMA/OFDMA kênh TDM/TDMA TDM/TDMA/OFDMA Song công TDD và FDD TDD và FDD TDD và FDD Độ rộng kênh 1.75, 3.5, 7, 14, 1.25, 5, 1.75, 3.5, 7, 14, 1.25, 5, 10, 20, 25, 28 truyền 10, 15, 8.75 15, 8.75 (MHz) Giao diện WirelessMAN-SCa, WirelessMAN-SCa, WirelessMAN- không WirelessMAN-OFDM, WirelessMAN-OFDM, SC gian WirelessMAN-OFDMA WirelessMAN-OFDMA Xử lý 256-OFDM như là S-OFDMA như là WiMAX Không WiMAX WiMAX cố định di động Bảng 1.6: Tóm tắt các đặc trưng cơ bản các chuẩn WIMAX 1.5) Các băng tần của WIMAX 1.5.1) Các băng tần được đề xuất cho WIMAX trên thế giới GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  13. 13 Các băng được Diễn đàn WIMAX tập trung xem xét và vận động cơ quan quản lý tần số các nước phân bổ cho WiMax là: - Băng tần 2,3-2,4GHz (2,3GHz Band) : được đề xuất sử dụng cho Mobile WIMAX . Tại Hàn Quốc băng này đã được triển khai cho WBA (WiBro). - Băng tần 2,4-2,4835GHz: được đề xuất sử dụng cho WiMAX trong tương lai . - Băng tần 2,5-2,69GHz (2,5GHz Band): được đề xuất sử dụng cho WIMAX di động trong giai đoạn đầu . - Băng tần 3,3-3,4GHz (3,3GHz Band): được đề xuất sử dụng cho WIMAX cố định. - Băng tần 3,4-3,6GHz (3,5GHz Band): được đề xuất sử dụng cho WIMAX cố định trong giai đoạn đầu : FWA (Fixed Wireless Access)/WBA (WideBand Access). - Băng tần 3,6-3,8GHz: được đề xuất sử dụng cho WIMAX cố định (WBA) và cấp cho Châu Âu. Tuy nhiên, băng 3,7-3,8 GHz đã được dung cho vệ tinh viễn thông Châu Á, nên băng tần này không được sử dụng cho WIMAX Châu Á. - Băng tần 5,725-5,850GHz: được đề xuất sử dụng cho WIMAX cố định trong giai đoạn đầu. - Ngoài ra, một số băng tần khác phân bổ cho BWA cũng được một số nước xem xét cho BWA/WIMAX là: băng tần 700-800MHz (< 1GHz), băng 4,9-5,1GHz. 1.5.2) Các băng tần ở Việt nam có khả năng dành cho WIMAX - Băng tần 2,3-2,4GHz và 3,3-3,4GHz cho các hệ thống truy cập không dây băng rộng, kể cả WIMAX . - Băng tần 5,725-5,850GHz cho các hệ thống truy cập không dây băng rộng, kể cả WIMAX nhưng các hệ thống này phải dùng chung băng tần với các hệ thống WiFi với điều kiện bảo vệ các hệ thống WiFi hoạt động trong băng tần này. - Băng tần 2,5-2,690GHz cho các hệ thống truy cập không dây băng rộng, kể cả IMT-2000 và WIMAX .Hiện tại, chính phủ đã cấp phép thử nghiệm dịch vụ WIMAX di động tại băng tần 2,3-2,4 GHz; và băng tần 2,5-2,69 GHz. (theo công văn số 5535/VPCP-CN của Văn phòng Chính phủ). 1.6) TRUYỀN SÓNG GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  14. 14 Trong khi nhiều công nghệ hiện đang tồn tại cho không dây băng rộng chỉ có thể cung cấp phủ sóng LOS, công nghệ WIMAX được tối ưu để cung cấp phủ sóng NLOS. Công nghệ tiên tiến của WiMAX cung cấp tốt nhất cho cả hai. Cả LOS và NLOS bị ảnh hưởng bởi các đặc tính đường truyền môi trường của chúng, tổn thất đường dẫn, và ngân quỹ kết nối vô tuyến. Trong liên lạc LOS, một tín hiệu đi qua một đường trực tiếp và không bị tắc nghẽn từ máy phát đến máy thu. Một liên lạc LOS yêu cầu phẩn lớn miền Fresnel thứ nhất thì không bị ngăn cản của bất kì vật cản nào, nếu tiêu chuẩn này không thỏa mãn thì có sự thu nhỏ đáng kể cường độ tín hiệu quan sát. Độ hở Fresnel được yêu cầu phụ thuộc vào tần số hoạt động và khoảng cách giữa vị trí máy phát và máy thu. Trong liên lạc NLOS, tín hiệu đến máy thu qua phản xạ, tán xạ, nhiễu xạ. Các tín hiệu đến máy thu bao gồm các thành phần từ đường trực tiếp, các đường được phản xạ nhiều lần, năng lượng bị tán xạ, và các đường truyền bị nhiễu xạ. Các tín hiệu này có khoảng trễ khác nhau, suy hao, phân cực, và độ ổn định quan hệ với đường truyền trực tiếp. Là nguyên nhân gây ra nhiễu ISI và méo tín hiệu. Điều đó không phải là vấn đề đối với LOS, nhưng với NLOS thì lại là vấn đề chính. Có nhiều ưu điểm mà những triển khai NLOS tạo ra đáng mong muốn. Ví dụ, các yêu cầu lập kế hoạch chặt chẽ và giới hạn chiều cao anten mà thường không cho phép anten được bố trí cho LOS. Với những triển khai tế bào kề nhau phạm vi rộng, nơi tần số được sử dụng lại là tới hạn, hạ thấp anten là thuận lợi để giảm nhiễu kênh chung giữa các vị trí cell liền kề. Điều này thường có tác dụng thúc đẩy các trạm gốc hoạt động trong các điều kiện NLOS. Các hệ thống LOS không thể giảm chiều cao anten bởi vì làm như vậy sẽ có tác động đến đường quan sát trực tiếp được yêu cầu từ CPE đến trạm gốc. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  15. 15 Hình 1.7: Minh họa họat động WIMAX Hình 1.8: Truyền sóng trong trường hợp LOS GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  16. 16 Hình 1.9: Truyền sóng trong trường hợp NLOS 1.7) TÌNH HÌNH TRIỂN KHAI WIMAX 1.7.1) Tình hình triển khai WIMAX trên thế giới Hiện nay, trên thế giới, đã có các mạng thử nghiệm công nghệ WIMAX cố định và di động. Theo đánh giá của Maravedis Inc. thì thị trường viễn thông băng rộng cố định đến năm 2010 có doanh thu vượt 2 tỷ USD. Hiện nay, tốc độ tăng trưởng hằng năm là 30%. Việc xuất hiện một công nghệ truy cập không dây băng rộng mới như WIMAX cho phép triển khai nhanh dịch vụ, sẽ làm bùng nổ thị trường trong những năm tới. Đến nay, đã có một số nước đã đi vào triển khai và khai thác thử nghiệm các dịch vụ trên nền Mobile WIMAX như Mỹ, Úc, Brazil Một sự kiện có thể coi là một bước ngoặt quan trọng của WIMAX – từ ngày 15- 19/10/2007 – cơ quan viễn thông quốc tế thuộc liên hiệp quốc ITU đã phê duyệt công nghệ băng rộng không dây này vào bộ chuẩn IMT-2000. Quyết đinh này đã đưa WIMAX lên ngang tầm với những kỹ thuật kết nối vô tuyến hàng đầu hiện nay trong bộ chuẩn IMT-2000 gồm có GSM, CDMA và UMTS. Điều này đảm bảo cho các nhà khai thác và quản lý trên toàn thế giới yên tâm đầu tư vào băng rộng di động thực sự dùng WIMAX . 1.7.2) Tình hình triển khai WIMAX thử nghiệm tại Việt Nam VNPT triển khai thử nghiệm công nghệ WIMAX tại Lào Cai vào tháng 10/2006 và đã nghiệm thu thành công vào tháng 4/2007. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  17. 17 Năm 2006, tại Việt Nam, đã có 4 doanh nghiệp được Bộ Bưu chính Viễn thông cho phép cung cấp thử nghiệm dịch vụ WiMAX cố định là Viettel, VTC, VNPT và FPT Telecom. Sau khi thử nghiệm xong, Bộ sẽ lựa chọn 3 nhà cung cấp chính thứ cho loại hình băng rộng không dây này. Ngày 1/10/2007, Chính phủ đã cấp phép triển khai dịch vụ thông tin di động 3G và dịch vụ truy nhập băng rộng không dây WIMAX (theo công văn 5535/VPCP-CN của văn phòng Chính phủ). Đồng thời, Phó thủ tướng đã đồng ý cấp phép thử nghiệm dịch vụ WIMAX di động cho 4 doanh nghiệp EVN Telecom, Viettel, FPT và VTC thử nghiệm tại băng tần 2.3 - 2.4 GHz; VNPT thử nghiệm tại băng tần 2.5 – 2.69 GHz. 1.8) So sánh WIMAX di động với 3G Hai dạng khác nhau của CDMA 3G được sử dụng rộng rãi là WCDMA - giải pháp FDD dựa trên cơ sở kênh 5 MHz và CDMA2000 - giải pháp dựa trên cơ sở kênh 1,25 MHz. WCDMA được phát triển để tăng khả năng đường suống với phiên bản truy nhập gói đường xuống tốc độ cao (HSDPA) và truy nhập gói đường lên tốc độ cao HSUPA . Nhóm phát triển 3G cũng cân nhắc phát triển khả năng truyền xa hơn cho WCDMA như là cung cấp MIMO với HSPA. Tương tự như vậy, CDMA 2000 được phát triển để tăng khả năng truyền dẫn số liệu tại phiên bản 1x EVDO-Rev 0 và 1x EVDO-Rev A. Một nâng cao nữa là phiên bản EVDO Rev B đưa vào khả năng đa sóng mang. Các thuộc tính cụ thể được đưa ra trong bảng sau: HSDPA/HSUA Thuộc tính 1x EVDO Rev A WiMAX di động (HSPA) Tiêu chuẩn cơ sở CDMA2000/IS-95 WCDMA IEEE802.16e P.P song công FDD FDD TDD Đa truy nhập (DL) TDM CDM-TDM OFDMA Đa truy nhập (UL) CDMA CDMA Độ rộng băng 1,25 MHz 5,0 MHz 5; 7; 8,75; 10 MHz GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  18. 18 Kích cỡ DL 1,67 ms 2 ms 5 ms TDD khung UL 6,67 ms 2/ 10 ms QPSK/ 8PSK/ QPSK/ 16QAM/ 64 Điều chế DL QPSK/ 16QAM 16QAM QAM Điều chế UL BPSK, QPSK/ 8PSK BPSK/ QPSK/ 16 QAM Mã hóa Turbo CC, Turbo CC, Turbo 46 Mbps,DL/UL=3 Tốc độ đỉnh DL 3,1 Mbps 14 Mbps 32 Mbps,DL/UL=1 7 Mbps,DL/UL=1 Tốc độ đỉnh UL 1,8 Mbps 5,8 Mbps 4 Mbps,DL/UL=3 Đồng bộ 4 kênh Đồng bộ 6 kênh Đồng bộ đa kênh H-ARQ nhanh IR nhanh CC CC Lập lịch nhanh DL Lập lịch Lập lịch nhanh DL Lập lịch nhanh UL và UL Chuyển vùng Chuyển vùng cứng Chuyển vùng cứng Chuyển vùng miền ảo (Handoff) khởi đầu từ mạng khởi đầu từ mạng Bảng 1.10: So sánh WIMAX di động và 3G 1.9) KẾT LUẬN CHƯƠNG Chương 1 đã khái quát được những đặc điểm cơ bản của WIMAX bao gồm khái niệm, ưu thế, ứng dụng, các chuẩn, các băng tần, quá trình triển khai ở nước ta và trên thế giới được sử dụng cho WIMAX . Ngoài ra, chương này cũng nêu lên được các ưu điểm, nhược điểm hệ thống sử dụng công nghệ WIMAX . So sánh đặc điểm của WIMAX với 3G. Chương này sẽ là nền tảng cho các chương tiếp theo nhằm tìm hiểu sâu hơn về hệ thống WIMAX . GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  19. 19 CHƯƠNG 2: CÁC KĨ THUẬT ĐIỀU CHẾ ĐƯỢC SỬ DỤNG TRONG WIMAX 2.1) Giới thiệu Với công nghệ tương tự trước đây (FM, AM) và biểu đồ điều chế số hóa hiệu suất thấp (PSK, BPSK và QPSK) được sử dụng rộng rãi trong các mạng ngày nay, công nghệ băng rộng không dây yêu cầu sử dụng các biểu đồ điều chế theo thứ tự cao hơn với hiệu quả trải phổ tốt hơn. Tuy nhiên, biểu đồ điều chế theo thứ tự cao hơn này rất dễ bị tác động bởi nhiễu và hiện tượng đa đường dẫn. Cả hai yếu tố này đều phổ biến trong các triển khai mạng không dây có mặt khắp nơi và số lượng người dùng lớn. OFDM, OFDMA và S-OFDMA là những công nghệ truy nhập mới cải tiến hỗ trợ kênh cần thiết để đạt được hiệu quả trải phổ tốt hơn và thông lượng kênh cao hơn. Những công nghệ truy nhập mới này là nền tảng cho WIMAX và là lựa chọn cho các hệ thống băng rộng di động tiếp theo khác nhằm cung cấp nhiều loại hình dịch vụ truyền thông đa phương tiện tốc độ cao. Trong chương này, chúng ta sẽ khảo sát tổng quan các kỹ thuật tiên tiến được áp dụng trong công nghệ WIMAX như là kỹ thuật OFDM, OFDMA, hệ thống anten tiên tiến 2.2) Kĩ thuật OFDM 2.2.1) Khái niệm Kỹ thuật OFDM là kỹ thuật ghép kênh phân chia theo tần số trực giao (Orthogonal Frequency Division Multiplexing). Trong OFDM, chuỗi dữ liệu tới đầu phát thường có tốc độ rất cao. Dòng dữ liệu này được chia thành nhiều dòng dữ liệu song song tốc độ thấp hơn nhờ bộ chuyển đổi nối tiếp-song song (S/P). Mỗi dòng dữ liệu song song sau đó được điều chế bởi một sóng mang, các sóng mang này được chọn trực giao với nhau để đảm bảo có thể tách riêng từng luồng dữ liệu tại đầu thu. Kế đến các sóng mang này được tổng hợp lại và đưa lên tần số phát. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  20. 20 Hình 2.1: So sánh giữa FDM và OFDM Số lượng các sóng mang con phụ thuộc vào nhiều yếu tố như độ rộng kênh và mức độ nhiễu. Con số này tương ứng với kích thước FFT. Chuẩn giao tiếp vô tuyến 802.16-2004 xác định 256 sóng mang con tương ứng FFT 256 điểm, hình thành chuẩn Fixed WIMAX, với độ rộng kênh cố định. Chuẩn giao tiếp 802.16-2005 cho phép kích cỡ FFT từ 512 đến 2048 phù hợp với độ rộng kênh 5MHz đến 20MHz, hình thành chuẩn Mobile WIMAX (Scalable OFDMA), để duy trì tương đối khoảng thời gian không đổi của các kí hiệu và khoảng dãn cách giữa các sóng mang với độ rộng kênh. Có thể thấy rõ lợi ích của OFDM khi xét qua kênh truyền. Nếu luồng dữ liệu gốc được chuyển trực tiếp lên sóng mang và phát lên kênh truyền, thì băng thông rộng của tín hiệu phát sẽ bị tác động chọn lọc tần số. Bởi vì, khi tín hiệu truyền có băng thông rộng (do tốc độ bit cao), các tần số khác nhau sẽ có độ suy hao khác nhau khi truyền qua kênh truyền vô tuyến. Điều này dẫn đến việc khôi phục tín hiệu tại máy thu sẽ phức tạp, đòi hỏi phải có bộ cân bằng. Trong OFDM, luồng dữ liệu được tách thành N luồng dữ liệu tốc độ thấp, có băng thông hẹp. Do đó, khi truyền, các luồng dữ liệu này chịu Fading phẳng cùng độ. Tại máy thu, luồng dữ liệu trước tiên được đưa về băng gốc bởi bộ trộn. Luồng dữ liệu này sau đó được tách ra thành N luồng dữ liệu tốc độ thấp, theo sau là bộ lọc thông thấp và bộ quyết định. 2.2.2) Sơ đồ khối OFDM GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  21. 21 Dữ liệu S/P Mã Chèn Chèn P/S hóa& Pilot FFT dải sắp bảo vệ xếp Kênh truyền AWGN w(n) Dữ liệu sắp xếp ước Loại P/S lưọng bỏ dải lại & FFT S/P kênh bảo vệ giải mã Sơ đồ 2.2: Sơ đồ khối hệ thống OFDM Đầu tiên, dòng dữ liệu vào với tốc độ cao được chia thành nhiều dòng dữ liệu song song tốc độ thấp hơn nhờ bộ chuyển đổi nối tiếp-song song (S/P). Mỗi dòng dữ liệu song song sau đó được mã hóa (Coding) sử dụng thuật toán FEC (Forward Error Correcting) và được sắp xếp (Mapping) theo một trình tự hỗn hợp. Những ký tự hỗn hợp được đưa đến đầu vào của khối IDFT (ở đây để thực hiện phép biến đổi IDFT người ta dùng thuật toán IFFT). Sau đó khoảng bảo vệ được chèn vào để giảm nhiễu xuyên ký tự (ISI), nhiễu xuyên kênh (ICI) do truyền trên các kênh vô tuyến di động đa đường. Dòng dữ liệu song song lại được chuyển thành nối tiếp nhờ bộ chuyển đổi song song-nối tiếp (P/S). Cuối cùng, bộ A/D phía phát định dạng tín hiệu thời gian liên tục và chuyển đổi lên miền tần số cao để truyền đi xa. - Trong quá trình truyền, trên các kênh sẽ có các nguồn nhiễu tác động đến như nhiễu Gausian trắng cộng (Additive White Gaussian Noise-AWGN). Ở phía thu, tín hiệu thu được chuyển xuống tần số thấp và tín hiệu rời rạc nhận được sau bộ D/A thu. Khoảng bảo vệ được loại bỏ và các mẫu được chuyển đổi từ miền thời gian sang miền tần số bằng phép biến đổi DFT dùng thuật toán FFT (khối FFT). Sau đó, tùy vào sơ đồ điều chế được sử dụng, sự dịch chuyển về biên độ và pha của các sóng mang nhánh sẽ được sắp xếp ngược trở lại và được giải mã. Cuối cùng, chúng ta nhận lại được dòng dữ liệu nối tiếp ban đầu. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  22. 22 2.2.3) Chuỗi bảo vệ trong hệ thống OFDM Ưu điểm của phương pháp điều chế OFDM không chỉ thể hiện ở hiệu quả sử dụng băng thông mà còn có khả năng làm giảm hay loại trừ nhiễu xuyên kí hiệu ISI nhờ sử dụng chuỗi bảo vệ (Guard Interval- GI). Một mẫu tín hiệu có độ dài là T S, chuỗi bảo vệ tương ứng là một chuỗi tín hiệu có độ dài T G ở phía sau được sao chép lên phần phía trước của mẫu tín hiệu này như hình vẽ sau (do đó, GI còn được gọi là Cyclic Prefix-CP). Sự sao chép này có tác dụng chống lại nhiễu xuyên kí hiệu ISI do hiệu ứng phân tập đa đường. G Phần tín tín hiệu hiệu có có ích ích I Hình 2.3: Khái niệm về chuỗi bảo vệ Nguyên tắc này giải thích như sau: Giả sử máy phát đi một khoảng tín hiệu có chiều dài là TS, sau khi chèn thêm chuỗi bảo vệ có chiều dài T G thì tín hiệu này có chiều dài là T=TS+TG. Do hiệu ứng đa đường multipath, tín hiệu này sẽ tới máy thu theo nhiều đường khác nhau. Trong hình vẽ mô tả dưới đây, hình a, tín hiệu theo đường thứ nhất không có trễ, các đường thứ hai và thứ ba đều bị trễ một khoảng thời gian so với đường thứ nhất.Tín hiệu thu được ở máy thu sẽ là tổng hợp của tất cả các tuyến, cho thấy kí hiệu đứng trước sẽ chồng lấn vào kí hiệu ngay sau đó, đây chính là hiện tượng ISI. Do trong OFDM có sử dụng chuỗi bảo vệ có độ dài T G sẽ dễ dàng loại bỏ hiện tượng này. Trong trường hợp T G ≥τ MAX như hình vẽ mô tả thì phần bị chồng lấn ISI nằm trong khoảng của chuỗi bảo vệ, còn thành phần tín hiệu có ích vẫn an toàn. Ở phía máy thu sẽ gạt bỏ chuỗi bảo vệ trước khi gửi tín hiệu đến bộ giải điều chế OFDM. Do đó, điều kiện cần thiết để cho hệ thống OFDM không TG  max bị ảnh hưởng bởi ISI là: với τMAX là trễ truyền dẫn tối đa của kênh. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  23. 23 Không có GI Có GI Hình 2.4: ISI và cyclic prefix 2.2.4) Nguyên tắc giải điều chế OFDM Các bước thực hiện ở đây đều ngược lại so với phía máy phát. Tín hiệu thu sẽ được tách chuỗi bảo vệ, giải điều chế để khôi phục băng tần gốc, giải điều chế ở các sóng mang con, chuyển đổi mẫu tín hiệu phức thành dòng bit (tín hiệu số) và chuyển đổi song song sang nối tiếp (k- k t 1)T T (k- kTS 1)TS Hình 2.5: Tách chuỗi bảo vệ 2.2.5) Các ưu và nhược điểm của kĩ thuật OFDM GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  24. 24 Qua việc phân tích về cơ bản kỹ thuật OFDM như trên, chúng ta có thể rút ra một số ưu điểm, nhược điểm chính của OFDM như sau: 2.2.5.1) Ưu điểm - Sử dụng phổ hiệu quả nhờ phổ tần số có dạng gần như cửa sổ chữ nhật nếu số sóng mang con đủ lớn. - Loại bỏ nhiễu xuyên ký tự (ISI) và nhiễu giữa các khung (IFI) nhờ sử dụng tiền tố vòng CP (Cyclic Prefix). - Khả năng chống nhiễu giữa các kênh con rất tốt nhờ việc sử dụng các sóng mang con trực giao. - Kỹ thuật OFDM cho phép thông tin tốc độ cao được truyền song song với tốc độ thấp hơn trên các kênh băng hẹp. Các kênh con này được coi là các kênh fading không lựa chọn tần số nên có thể dùng các bộ cân bằng đơn giản trong suốt quá trình nhận thông tin. Nói như vậy, hệ thống OFDM chống được ảnh hưởng của fading lựa chọn tần số. - Kỹ thuật OFDM là một phương pháp hiệu quả để giải quyết đa đường, kháng nhiễu băng hẹp tốt vì nhiễu này chỉ ảnh hưởng một tỷ lệ nhỏ các sóng mang con. - Thực hiện đơn giản trong miền tần số bằng cách dùng giải thuật FFT. Đồng thời máy thu đơn giản do không cần bộ khử ICI và ISI nếu khoảng dự trữ đủ dài. 2.2.5.2) Nhược điểm - OFDM là tập hợp của tín hiệu trên nhiều sóng mang, dải động của tín hiệu lớn nên có tỷ số công suất đỉnh/trung bình tương đối lớn sẽ làm hạn chế hiệu suất của bộ khuếch đại âm tần. - Mất mát hiệu suất phổ do chèn khoảng dự trữ. - Nhiễu pha do sự không phối hợp giữa các bộ dao động ở máy phát và máy thu, có thể làm ảnh hưởng đến chất lượng hệ thống. - Phải có sự đồng bộ chính xác về tần số và thời gian, đặc biệt là tần số. Như vậy, kỹ thuật OFDM là giải pháp rất phù hợp cho truyền dẫn vô tuyến tốc độ cao nói chung và cho công nghệ Wimax nói riêng. Theo phân tích về kỹ thuật OFDM như trên , dung lượng của hệ thống sẽ được đánh giá thông qua số lượng các sóng mang con được điều chế. Số lượng các sóng mang con phụ thuộc vào nhiều yếu tố như độ rộng kênh, mức độ nhiễu, kiểu điều chế, Con số này (sóng GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  25. 25 mang con) tương ứng với kích thước FFT. Cụ thể như chuẩn 802.16-2004 xác định rõ 256 sóng mang con, tương ứng với kích thước FFT 256 độ rộng kênh độc lập, chuẩn 802.16e-2005 cung cấp kích cỡ FFT từ 512 đến 2048 tương ứng với độ rộng kênh từ 5 MHz đến 20 MHz để duy trì khoảng cách tương đối không đổi của ký hiệu và khoảng dãn cách giữa các sóng mang con độc lập với độ rộng kênh. Như vậy, với công nghệ OFDM, nhờ sự kết hợp của các sóng mang con trực giao truyền song song với các ký hiệu có khoảng thời gian dài đảm bảo rằng lưu lượng băng thông rộng không bị hạn chế do môi trường không theo tầm nhìn thẳng NLOS và nhiễu do hiện tượng đa đường dẫn. 2.3) Kĩ thuật OFDMA 2.3.1) Khái niệm OFDMA (Orthogonal Frequency Division Multiple Access- Đa truy nhập phân tần trực giao) là một công nghệ đa sóng mang phát triển dựa trên nền kĩ thuật OFDM. Trong OFDMA, một số các sóng mang con, không nhất thiết phải nằm kề nhau, được gộp lại thành một kênh con (sub-channel) và các user khi truy cập vào tài nguyên sẽ được cấp cho một hay nhiều kênh con để truyền nhận tùy theo nhu cầu lưu luợng cụ thể. 2.3.2) Đặc điểm OFDMA có một số ưu điểm như là tăng khả năng linh hoạt, thông lượng và tính ổn định đươc cải thiện. Việc ấn định các kênh con cho các thuê bao cụ thể, việc truyền nhận từ một số thuê bao có thể xảy ra đồng thời mà không cần sự can thiệp nào, do đó sẽ giảm thiểu những tác động như nhiễu đa truy xuất (Multi access Interfearence - MAI) GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  26. 26 Hình 2.6: ODFM và OFDMA Hình 2.7 mô tả một ví dụ về bảng tần số - thời gian của OFDMA, trong đó có 7 người dùng từ a đến g và mỗi người sử dụng một phần xác định của các sóng mang phụ có sẵn, khác với những người còn lại. a d a d a d a d a d a d a c e a c e a c e a c e a c e a c e f b e g b e g b e g b e g b e g b e g b f g b f g b f g b f g b f g b f g t Bảng 2.7: Ví dụ của biểu đồ tần số, thời gian với OFDMA Thí dụ cụ thể này thực tế là sự hỗn hợp của OFDMA và TDMA bởi vì mỗi người sử dụng chỉ phát ở một trong 4 khe thời gian, chứa 1 hoặc vài symbol OFDM. 7 người sử dụng từ a đến g đều được đặt cố định (fix set) cho các sóng mang theo bốn khe thời gian. 2.3.3) OFDMA nhảy tần - Trong ví dụ trước của OFDMA, mỗi người sử dụng đều có một sự sắp đặt cố định (fix set) cho sóng mang. Có thể dễ dàng cho phép nhảy các sóng mang phụ theo khe thời gian như được mô tả trong hình - Việc cho phép nhảy với các mẫu nhảy khác nhau cho mỗi user làm biến đổi thực sự hệ thống OFDM trong hệ thống CDMA nhảy tần. Điều này có lợi là tính phân GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  27. 27 tập theo tần số tăng lên bởi vì mỗi user dùng toàn bộ băng thông có sẵn cũng như là có lợi về xuyên nhiễu trung bình, điều rất phổ biến đối với các biến thể của CDMA. Bằng cách sử dụng mã sửa lỗi hướng đi (Forward Error Correcting- FEC) trên các bước nhảy, hệ thống có thể sửa cho các sóng mang phụ khi bị fading sâu hay các sóng mang bị xuyên nhiễu bởi các user khác. Do đặc tính xuyên nhiễu và fading thay đổi với mỗi bước nhảy, hệ thống phụ thuộc vào năng lượng tín hiệu nhận được trung bình hơn là phụ thuộc vào user và năng lượng nhiễu trong trường hợp xấu nhất. a b c c b a b c f b a c a t Bảng 2.8: Biểu đồ tần số thời gian với 3 người dùng nhảy tần a, b, c đều có 1 bước nhảy với 4 khe thời gian - Ưu điểm cơ bản của hệ thống OFDMA nhảy tần hơn hẳn các hệ thống DS-CDMA và MC-CDMA là tương đối dễ dàng loại bỏ được xuyên nhiễu trong một tế bào bằng cách sử dụng các mẫu nhảy trực giao trong một tế bào. - Một ví dụ của việc nhảy tần như vậy được mô tả trong hình 2.9 cho N sóng mang phụ, nó luôn luôn có thể tạo ra N mẫu nhảy trực giao. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  28. 28 a f e d c b b a f e d c c b a f e d f d c b a f e e d c b a f f e d c b a t Bảng 2.9: 6 mẫu nhảy tần trực giao với 6 tần số nhảy khác nhau 2.3.4) Hệ thống OFDMA Điềuc Chèn I Chèn ADC hế Pilot F GI băng symbo F Kênh tần l T truyền gốc Giải Cân Chèn điều bằng I DAC GI chế kênh F băng TáchF tần gốc PilotT symbo l Khôi phục kênh truyền Sơ đồ 2.10: Tổng quan hệ thống sử dụng OFDMA - Nguồn tín hiệu được điều chế ở băng tần cơ sở thông qua các phương pháp điều chế như QPSK, M-QAM .Tín hiệu dẫn đường (bản tin dẫn đường, kênh hoa tiêu - pilot symbol) được chèn vào nguồn tín hiệu, sau đó được điều chế thành tín hiệu OFDM thông qua biến đổi IFFT và chèn chuỗi bảo vệ GI. Luồng tín hiệu số được chuyển thành tín hiệu tương tự trước khi truyền trên kênh vô tuyến qua anten phát. Tín hiệu này sẽ bị ảnh hưởng bởi fading và nhiễu trắng AWGN (Addictive White Gaussian Noise ). GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  29. 29 - Tín hiệu dẫn đường là mẫu tín hiệu được biết trước ở phía phát và phía thu, được phát kèm với tín hiệu có ích nhằm khôi phục kênh truyền và đồng bộ hệ thống. Data carriers Pilot Carriers Total Frequency band Frequency guard Band Frequency Guard Band Hình 2.11: Mẫu tín hiệu dẫn đường trong OFDMA - Phía máy thu sẽ thực hiện ngược lại so với máy phát. Để khôi phục tín hiệu phát thì hàm truyền phải được khôi phục nhờ vào mẫu tin dẫn đường đi kèm. Tín hiệu nhận được sau khi giải điều chế OFDM được chia làm hai luồng tín hiệu. Luồng thứ nhất là tín hiệu có ích được đưa đến bộ cân bằng kênh. Luồng thứ hai là mẫu tin dẫn đường được đưa vào bộ khôi phục kênh truyền, sau đó lại được đưa đến bộ cân bằng kênh để khôi phục lại tín hiệu ban đầu. 2.4.) Điều chế thích nghi Điều chế thích nghi cho phép hệ thống WiMAX điều chỉnh sơ đồ điều chế tín hiệu phụ thuộc vào điều kiện SNR của liên kết vô tuyến. Khi liên kết vô tuyến chất lượng cao, sơ đồ điều chế cao nhất được sử dụng, đưa ra hệ thống dung lượng lớn hơn. Hình 2.12: Bán kính cell quan hệ với điều chế thích nghi Trong quá trình suy giảm tín hiệu, hệ thống WiMAX có thể dịch đến một sơ đồ GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  30. 30 điều chế thấp hơn để duy trì chất lượng kết nối và ổn định liên kết. Đặc điểm này cho phép hệ thống khắc phục fading lựa chọn thời gian. 2.5) Công nghệ sửa lỗi Các công nghệ sửa lỗi đã được sử dụng trong WIMAX để đạt các yêu cầu về tỉ số tín hiệu trên tạp âm hệ thống. Các thuật toán FEC, mã hóa xoắn và chèn được dùng để phát hiện và sửa các lỗi cải thiện thông lượng. Các công nghệ sửa lỗi mạnh giúp khôi phục các khung bị lỗi mà có thể bị mất do fading lựa chọn tần số và các lỗi cụm. Tự động yêu cầu lặp lại (ARQ) được dùng để sửa lỗi mà không thể được sửa bởi FEC, gửi lại thông tin bị lỗi. Điều này có ý nghĩa cải thiện chất lượng tỉ lệ lỗi bit (BER) đối với một mức ngưỡng như nhau. 2.6) Điều khiển công suất Các thuật toán điều khiển công suất được dùng để cải thiện chất lượng toàn bộ hệ thống, nó được thực hiện bởi trạm gốc gửi thông tin điều khiển công suất đến mỗi CPE để điều chỉnh mức công suất truyền sao cho mức đã nhận ở trạm gốc thì ở một mức đã xác định trước. Trong môi trường fading thay đổi động, mức chỉ tiêu đã định trước này có nghĩa là CPE chỉ truyền đủ công suất thỏa mãn yêu cầu này. Điều khiển công suất giảm sự tiêu thụ công suất tổng thể của CPE và nhiễu với những trạm gốc cùng vị trí. Với LOS, công suất truyền của CPE gần tương ứng với khoảng cách của nó đến trạm gốc, với NLOS, tùy thuộc nhiều vào độ hở và vật cản. 2.7) Công nghệ ăng-ten tiên tiến Công nghệ anten có thể dùng để cải thiện truyền dẫn theo hai cách – sử dụng công nghệ phân tập và sử dụng các hệ thống anten và các công nghệ chuyển mạch tiên tiến. Các công nghệ này có thể cải thiện tính co dãn và tỉ số tín hiệu trên tạp âm nhưng không bảo đảm phát dẫn sẽ không bị ảnh hưởng của nhiễu. 2.7.1) Phân tập thu và phát Các lược đồ phân tập được sử dụng để lợi dụng các tín hiệu đa đường và phản xạ xảy ra trong các môi trường NLOS. Bằng cách sử dụng nhiều ăng ten (truyền và/hoặc nhận), fading, nhiễu và tổn hao đường truyền có thể được làm giảm. Phân GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  31. 31 tập truyền sử dụng mã thời gian không gian STC. Đối với phân tập nhận, các công nghệ như kết hợp tỷ lệ tối đa (MRC) mang lại ưu điểm của hai đường thu riêng biệt. Về MISO (nhiều đầu vào một đầu ra). Hình 2.13: MISO Mở rộng tới MIMO, sử dụng MIMO cũng sẽ nâng cao thông lượng và tăng các đường tín hiệu. MIMO sử dụng nhiều ăng ten thu và/hoặc phát cho ghép kênh theo không gian. Mỗi ăng ten có thể truyền dữ liệu khác nhau mà sau đó có thể được giải mã ở máy thu. Đối với OFDMA, bởi vì mỗi sóng mang con là các kênh băng hẹp tương tự, fading lựa chọn tần số xuất hiện như là fading phẳng tới mối sóng mang. Hiệu ứng này có thể sau đó được mô hình hóa như là một sự khuếch đại không đổi phức hợp và có thể đơn giản hóa sự thực hiện của một máy thu MIMO cho OFDMA. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  32. 32 Hình 2.14: MIMO 2.7.2) Các hệ thống anten thích nghi Các hệ thống anten thích nghi (Adaptive Antenna systems – AAS) là một phần tùy chọn. Các trạm gốc có trang bị AAS có thể tạo ra các chùm mà có thể được lái, tập trung năng lượng truyền để đạt được phạm vi lớn hơn. Khi nhận, chúng có thể tập trung ở hướng cụ thể của máy thu. Điều này giúp cho loại bỏ nhiễu không mong muống từ các vị trí khác. Hình 2.15: Beam Shaping GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  33. 33 Hình 2.16: AAS đường xuống 2.8) Kết luận chương Chương 2 đã trình bày các đặc điểm kỹ thuật của WIMAX, nổi bật là các kỹ thuật OFDM, OFDMA, cùng với các kỹ thuật điều chế thích nghi, sửa lỗi và các hệ thống anten thông minh. Ở chương tiếp theo, chúng ta sẽ xem xét đến kiến trúc mạng truy cập WIMAX CHƯƠNG 3: KIẾN TRÚC MẠNG TRUY CẬP WIMAX 3.1) Giới thiệu chương Nội dung của chương là trình bày mô hình tham chiếu và phạm vi của chuẩn ứng dụng cho WiMAX, bao gồm lớp MAC ( lớp con hội tụ MAC, lớp con phần chung MAC, lớp con bảo mật ) và lớp PHY (lớp vật lý ). 3.2) Mô hình tham chiếu. - Hình 3.1 minh họa mô hình tham chiếu và phạm vi của chuẩn. Trong mô hình tham chiếu này, lớp PHY tương ứng với lớp 1 (lớp vật lý) và lớp MAC tương ứng với lớp 2 (lớp liên kết dữ liệu) trong mô hình OSI. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  34. 34 Hình 3.1: Mô hình tham chiếu - Trên hình ta có thể thấy lớp MAC bao gồm 3 lớp con. Lớp con hội tụ chuyên biệt dịch vụ cung cấp bất cứ biến đổi hay ánh xạ dữ liệu mạng bên ngoài, mà nhận được qua điểm truy nhập dịch vụ CS (CS SAP), vào trong các MAC SDU được tiếp nhận bởi lớp con phần chung MAC (CPS) qua SAP MAC. Tức là phân loại các đơn vị dữ liệu dịch vụ mạng ngoài (các SDU) và kết hợp chúng với định danh luồng dịch vụ (SFID) MAC và định danh kết nối (CID) riêng. Nó cũng có thể bao gồm các chức năng như nén đầu mục tải (PHS). Nhiều đặc tính CS được cung cấp cho giao tiếp với các giao thức khác nhau. Định dạng bên trong của payload CS là duy nhất với CS, và MAC CPS không được đòi hỏi phải hiểu định dạng hay phân tích bất cứ thông tin nàu từ payload CS. MAC CPS cung cấp chức năng MAC cốt lõi truy nhập hệ thống, định vị dải thông, thiết lập kết nối, và quản lý kết nối. Nó nhận dữ liệu từ các CS khác nhau, qua MAC SAP, mà được phân loại tới các kết nối MAC riêng. MAC cũng chứa một lớp con bảo mật riêng cung cấp nhận thực, trao đổi khóa bảo mật, và mật hóa. - Lớp vật lý là một ánh xạ hai chiều giữa các MAC-PDU và các khung lớp vật lý được nhận và được truyền qua mã hóa và điều chế các tín hiệu RF. 3.3) Lớp MAC. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  35. 35 3.3.1) Lớp con hội tụ MAC Chuẩn định nghĩa hai lớp con quy tụ chuyên biệt về dịch vụ tổng thể để ánh xạ các dịch vụ đến và từ những kết nối MAC. Lớp con quy tụ ATM được định nghĩa cho những dịch vụ ATM và lớp con quy tụ gói được định nghĩa để ánh xạ các dịch vụ gói như IPv4, IPv6, Ethernet và VLAN. Nhiệm vụ chủ yếu của lớp con là phân loại các SDU (đơn vị dữ liệu dịch vụ) theo kết nối MAC thích hợp, bảo toàn hay cho phép QoS và cho phép định vị dải thông. Ngoài những chức năng cơ bản này, các lớp con quy tụ có thể cũng thực hiện nhiều chức năng phức tạp hơn như chặn và xây dựng lại đầu mục tải tối đa để nâng cao hiệu suất kết nối không gian. 3.3.2) Lớp con phần chung MAC Lớp con phần chung MAC (MAC CPS) là trung tâm của chuẩn. Trong lớp con này, các quy tắc cho quản lý kết nối, định vị dải thông và cơ cấu cho truy nhập hệ thống được định nghĩa. Ngoài ra các chức năng như lập lịch đường lên, yêu cầu và cấp phát dải thông, và yêu cầu lặp lại tự động (ARQ) cũng được định nghĩa. 3.3.2.1) Địa chỉ và kết nối - Mỗi MS có một địa chỉ MAC 48 bit, xác định duy nhất MS từ trong tập tất cả các nhà cung cấp có thể và các loại thiết bị. Nó được sử dụng cho quá trình “Intial ranging” để thiết lập các kết nối thích hợp cho một MS. Nó cũng được sử dụng như là một phần của quá trình nhận thực. - MAC 802.16 theo kiểu hướng kết nối. Tất cả những dịch vụ bao gồm những dịch vụ không kết nối cố hữu, được ánh xạ tới một kết nối. Điều đó cung cấp một cơ chế cho yêu cầu dải thông, việc kết hợp QoS và các tham số về lưu lượng, vận chuyển và định tuyến dữ liệu đến lớp con quy tụ thích hợp và tất cả các hoạt động khác có liên quan đến điều khoản hợp đồng của dịch vụ. Các kết nối được tham chiếu đến các CID 16-bit và có thể yêu cầu liên tiếp dải thông được cấp phát hay dải thông theo yêu cầu. 3.3.2.2) Các định dạng MAC PDU - MAC-BS và MAC-MS trao đổi các bản tin, và các bản tin này được xem như các PDU. Định dạng của MAC PDU xem hình 3.2 GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  36. 36 Hình 3.2: Các định dạng MAC PDU - Trên hình ta có thể thấy bản tin bao gồm ba phần: header MAC chiều dài cố định là 6 byte, payload chiều dài thay đổi và CRC. Ngoại trừ các PDU yêu cầu dải thông (không có payload), các MAC PDU có thể chứa hoặc các bản tin quản lý MAC hoặc dữ liệu lớp con hội tụ - MAC SDU. Payload là tùy chọn, CRC cũng tùy chọn và chỉ được sử dụng nếu MS yêu cầu trong các tham số QoS. - Có hai loại header MAC: header MAC chung (GMH) và header MAC yêu cầu dải thông (BR). GMH được sử dụng để truyền dữ liệu hoặc các bản tin quản lý MAC. Header BR được sử dụng bởi MS để yêu cầu nhiều dải thông hơn trên UL. Header MAC và các bản tin quản lý MAC không được mật hóa. 3.3.2.3) Xây dựng và truyền các MAC PDU - Các MAC PDU được truyền trên các burst PHY, burst PHY có thể chứa nhiều block FEC. - Bao gồm các bước sau: ghép, phân mảnh, đóng gói, tính toán CRC, mật hóa các PDU, đệm. 3.3.2.4) Cơ cấu ARQ - ARQ sẽ không được sử dụng với đặc tả PHY WirelessMAN-SC. Cơ cấu ARQ là một phần của MAC, mà là tùy chọn bổ sung. Khi được bổ sung, ARQ có thể được phép trên cơ sở mỗi kết nối. Mỗi kết nối ARQ sẽ được chỉ rõ và được dàn xếp trong thời gian tạo kết nối. Một kết nối không thể có sự kết hợp cả lưu lượng ARQ và không ARQ. Chỉ hiệu quả với các ứng dụng không thời gian thực. - Thông tin feedback ARQ có thể được gửi như một bản tin quản lý MAC độc lập trên kết nối quản lý cơ bản thích hợp, hoặc được mang trên một kết nối đang tồn tại. Feedback ARQ không thể bị phân mảnh. Cửa sổ trượt ở lớp 2 dựa vào cơ cấu điều khiển luồng. ARQ sử dụng một trường số tuần tự 11 bit, CRC – 32 để kiểm tra lỗi dữ liệu. 3.3.2.5) Truy nhập kênh và QoS GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  37. 37 - IEEE 802.16 có thể hỗ trợ nhiều dịch vụ thông tin (dữ liệu, thoại, video) với các yêu cầu QoS khác nhau. Cơ cấu nguyên lý để cung cấp QoS là phải kết hợp các gói qua giao diện MAC vào một luồng dịch vụ được nhận biết bởi CID. Một luồng dịch vụ là một luồng vô hướng mà được cung cấp một QoS riêng biệt. MS và BS cung cấp QoS này theo tập tham số QoS được định nghĩa cho luồng dịch vụ. Mục đích chính của các đặc tính QoS được định nghĩa ở đây là để xác định thứ tự và lập lịch truyền ở giao diện không gian. - Các luồng dịch vụ tồn tại ở hướng đường lên và đường xuống và có thể tồn tại mà không được hoạt động để mang lưu lượng. Tất cả các luồng dịch vụ có một SFID 32 bit, các luồng dịch vụ họat động và chấp nhận cũng có một CID 16 bit. Các loại luồng dịch vụ: Các luồng dịch vụ dự trữ, các luồng dịch vụ “admitted”, các luồng dịch vụ “active”. Các luồng dịch vụ có thể là tĩnh (được xây dựng trước) hoặc được tạo động. Mô đun cấp phép BS cho phép hay từ chối mỗi thay đổi tham số QoS. Chuẩn định nghĩa nhiều khái niệm liên quan đến QoS như: lập lịch luồng dịch vụ QoS, thiết lập dịch vụ động, mô hình họat động hai pha. 3.3.2.6) Các cơ cấu yêu cầu và cấp phát dải thông 3.3.2.6.1) Các yêu cầu - Các yêu cầu dựa vào cơ cấu mà MS sử dụng để thông báo cho BS rằng chúng cần cấp phát dải thông đường lên. Một yêu cầu có thể được xem như là một header yêu cầu dải thông độc lập hoặc là một yêu cầu mang trên một bản tin nào đó (piggyback). Bản tin yêu cầu dải thông có thể được truyền trong bất cứ vị trí đường lên nào, ngoại trừ trong khoảng intial ranging. - Các yêu cầu dải thông có thể là tăng thêm hoặc gộp lại. Khi BS nhận một yêu cầu dải thông tăng, nó sẽ thêm lượng dải thông được yêu cầu vào sự cảm nhận hiện thời các nhu cầu dải thông của nó của kết nối. Khi BS nhận một yêu cầu dải thông gộp lại, nó sẽ thay sự cảm nhận các nhu cầu dải thông của nó của kết nối bằng lượng dải thông được yêu cầu. 3.3.2.6.2) Các cấp phát - Đối với một MS, các yêu cầu dải thông liên quan tới các kết nối riêng trong khi mỗi cấp phát dải thông được gửi tới CID cơ bản của MS, không phải tới các CID GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  38. 38 riêng. Bởi vì không xác định trước yêu cầu sẽ được thực hiện đúng, khi MS nhận một cơ hội truyền ngắn hơn mong đợi (quyết định trình lập lịch, mất bản tin yêu cầu, ), không có lý do rõ ràng nào được đưa ra. Trong tất cả các trường hợp, dựa vào thông tin nhận được sau cùng từ BS và trạng thái của yêu cầu, MS có thể quyết định thực hiện yêu cầu trở lại hoặc hủy SDU. Một MS có thể sử dụng các thành phần thông tin yêu cầu mà được quảng bá, trực tiếp ở một nhóm thăm dò multicast mà nó là một thành viên trong đó, hoặc trực tiếp ở CID cơ bản của nó. 3.3.2.6.3) Thăm dò - Thăm dò là quá trình trong đó BS chỉ định cho các MS dải thông dành cho mục đích tạo các yêu cầu dải thông. Các chỉ định này có thể tới các MS riêng hoặc nhóm các MS. Tất cả các chỉ định cho các nhóm các kết nối và hoặc các MS thực tế là xác định các thành phần thông tin cạnh tranh yêu cầu dải thông. Các chỉ định thì không ở dạng bản tin rõ ràng, nhưng mà được chứa như là một chuỗi các thành phần thông tin trong UL-MAP. Thăm dò được thực hiện trên cơ sở MS. Dải thông luôn được yêu cầu trên cơ sở CID và dải thông được chỉ định trên cơ sở MS. 3.3.2.7) Hỗ trợ PHY Nhiều công nghệ song công được hỗ trợ bởi giao thức MAC. Chọn lựa công nghệ song công có thể ảnh hưởng tới các tham số PHY nào đó cũng như tác động tới các đặc tính mà có thể được hỗ trợ. - FDD : Các kênh đường lên và đường xuống được đặt ở các tần số tách biệt và dữ liệu đường xuống có thể được truyền theo trong các burst. Một khung chu kỳ cố định được sử dụng cho các truyền dẫn đường lên và đường xuống. Điều này thuận tiện cho sử dụng các loại điều chế khác nhau. Và cũng cho phép đồng thời sử dụng cả các MS song công (truyền và nhận đồng thời) và tùy chọn các MS bán song công (không truyền và nhận đồng thời). Nếu các MS bán song công được sử dụng, trình điều khiển dải thông sẽ không chỉ định dải thông cho một MS bán song công ở cùng thời điểm mà nó được trông mong để nhận dữ liệu ở kênh đường xuống, bao gồm hạn định cho phép trễ truyền, khoảng truyền dẫn truyền/nhận MS (SSTTG), và khoảng truyền dẫn nhận/truyền MS (SSRTG). - TDD : Truyền đường lên và xuống xảy ra ở các thời điểm khác nhau và thường chia sẻ cùng tần số. Một khung TDD có khu kỳ cố định và chứa một khung con GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  39. 39 đường xuống và một khung con đường lên. Khung được chia thành một số nguyên các khe thời gian vật lý, mà giúp cho phân chia dải thông dễ dàng. 3.3.2.8) Vào mạng - Để giao tiếp trên mạng, một MS cần hoàn tất quá trình vào mạng với BS mong muốn. Các hệ thống hỗ trợ các thủ tục thích hợp cho tiếp nhận và đăng ký một MS mới hoặc một node mới tới mạng. Thủ tục có thể được chia thành các giai đoạn sau: 1 Quét kênh đường xuống và thiết lập đồng bộ với BS 2 Giành các số truyền (từ bản tin UCD) 3 Thực hiện ranging 4 Dàn xếp các khả năng cơ bản 5 Cấp phép MS và thực hiện trao đổi khóa 6 Thực hiện đăng ký 7 Thiết lập kết nối IP 8 Thiết lập thời gian trong ngày 9 Truyền các tham số họat động 10 Thiết lập các kết nối. Vào lúc hoàn thành quá trình vào mạng, MS tạo ra một hoặc nhiều luồng dịch vụ để gửi dữ liệu tới BS. 3.3.3) Lớp con bảo mật Toàn bộ bảo mật của 802.16 dựa vào lớp con bảo mật. Lớp con bảo mật là lớp con giữa MAC CPS và lớp vật lý. Mục tiêu của nó là để cung cấp điều khiển truy nhập và sự cẩn mật của liên kết dữ liệu, chịu trách nhiệm mật hóa và giải mã dữ liệu mà đưa đến và đi ra khỏi lớp vật lý PHY và cũng được sử dụng cho cấp phép và trao đổi khóa bảo mật, Ngăn chặn đánh cắp dịch vụ. Bảo mật của 802.16 gồm các thành phần sau: các liên kết bảo mật (SA), chứng nhận X.509, giao thức cấp phép quản lý khóa riêng tư (authorization PKM), quản lý khóa và riêng tư (PKM) và mật hóa dữ liệu 3.4. Lớp vật lý GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  40. 40 Chuẩn định nghĩa các PHY khác nhau mà có thể được sử dụng kết hợp với lớp MAC để đem lại một liên kết end- to- end tin cậy. 3.4.1) Đặc tả WirelessMAN-SC PHY - Đặc tả này được thiết kế nhằm mục đích cho hoạt động ở dải tần 10-66GHz, với mức độ mềm dẻo cao để cho phép các nhà cung cấp dịch vụ có thể tối ưu các triển khai hệ thống đối với quy hoạch cell, chi phí, khả năng vô tuyến, các dịch vụ và dung lượng. - Để cho phép sử dụng phổ mềm dẻo, cả TDD và FDD được hỗ trợ. Hai công nghệ này sử dụng một định dạng truyền dẫn burst mà cơ cấu khung của nó hỗ trợ burst profiling thích ứng, ở đó những tham số truyền, bao gồm các kế hoạch điều chế và mã hóa, có thể được điều chỉnh riêng cho mỗi trạm thuê bao trên cơ sở từng khung một. Điều chế QPSK, 16QAM, 64QAM. - Cấu trúc khung bao gồm một khung con đường xuống và một khung con đường lên. Kênh đường xuống là TDM, với thông tin cho mỗi MS được ghép kênh trên một luồng dữ liệu duy nhất và được nhận bởi tất cả các MS trong cùng dải quạt. Để hỗ trợ các MS bán song công phân chia tần số, đường xuống cũng được cấu tạo chứa một đoạn TDMA. - Đường lên dựa vào sự kết hợp TDMA và DAMA. Cụ thể, kênh đường lên được phân thành một số khe thời gian. Số các khe thời gian được gán cho các sử dụng khác nhau (đăng ký, cạnh tranh, bảo vệ, hoặc lưu lượng) được điều khiển bởi MAC trong BS và có thể thay đổi đối với thời gian để chất lượng tối ưu. Mỗi MS sẽ cố gắng nhận tất cả các phần của đường xuống trừ những burst mà burst profile của nó hoặc không được thực hiện bởi MS hoặc không mạnh bằng burst profile đường xuống hoạt động hiện thời của MS. Các MS bán song công sẽ không cố gắng nghe các phần trùng khớp đường xuống với truyền dẫn đường lên được chỉ định cho chúng, nếu có thể, được điều chỉnh bởi sự sớm định thời truyền của chúng. Các chu kỳ khung có thể là 0,5 ms, 1 ms, 2ms. 3.4.2) Đặc tả PHY WirelessMAN-SCa WirelessMAN-SCa PHY dựa vào công nghệ điều chế sóng mang đơn và được thiết kế cho hoạt động NLOS ở các dải tần dưới 11GHz. Các thành phần trong PHY này gồm: GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  41. 41 - Các định nghĩa TDD và FDD, một trong hai phải được hỗ trợ. - Đường lên TDMA, đường xuống TDM hoặc TDMA. - Điều chế thích ứng Block và mã hóa FEC cho cả đường lên và đường xuống. - Các cấu trúc khung mà cho phép sự cân bằng và chỉ tiêu đánh giá kênh được cải thiện đối với NLOS và các môi trường trải rộng trễ được mở rộng. - FEC ràng buộc vào nhau sử dụng Reed-Solomon và điều chế được mã hóa mắt lưới thực dụng với chèn tùy chọn. - Các tùy chọn FEC BTC và CTC bổ sung. - Tùy chọn không FEC sử dụng ARQ cho điều khiển lỗi. - Tùy chọn phân tập truyền mã hóa thời gian không gian (STC). - Các chế độ mạnh cho hoạt động CINR thấp. - Các thiết lập tham số và các bản tin MAC/PHY mà thuận tiện cho các bổ sung AAS tùy chọn. 3.4.3) Đặc tả PHY WirelessMAN-OFDM. 3.4.3.1) Đặc điểm - WirelessMAN-OFDM PHY dựa vào điều chế OFDM và được thiết kế cho họat động NLOS ở các dải tần số dưới 11GHz. WirelessMAN-OFDM, một lược đồ ghép kênh phân chia tần số trực giao (OFDM) với 256 sóng mang. Đa truy nhập của các trạm thuê bao khác nhau dựa vào đa truy nhập phân chia thời gian (TDMA). - Lớp PHY OFDM hỗ trợ các hoạt động TDD và FDD, với hỗ trợ cho các SS cả FDD và H – FDD. - Mã hóa sửa lỗi trước FEC: một lược đồ mã xoắn RS-CC tốc độ thay đổi được kết hợp, hỗ trợ các tốc độ mã hóa 1/2, 2/3, 3/4 và 5/6. BTC tốc độ thay đổi (tùy chọn)và mã CTC cũng được hỗ trợ tùy chọn. - Chèn (Interleaving). - Điều chế: Chuẩn hỗ trợ các mức điều chế, gồm BPSK, QPSK, 16- QAM và 64- QAM. - Hỗ trợ (tùy chọn) phân tập phát ở đường xuống sử dụng STC và các hệ thống anten thích nghi (AAS) với SDMA. Lược đồ phân tập sử dụng hai anten ở BS để truyền một tín hiệu được mã hóa STC. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  42. 42 - Nếu phân tập truyền được sử dụng, một phần khung DL (được gọi là miền) có thể được định rõ để trở thành miền phân tập truyền. Tất cả các burst dữ liệu trong miền phân tập truyền sử dụng mã hóa STC. Cuối cùng, nếu AAS được sử dụng, một phần khung con DL có thể được chỉ định như là miển AAS. Trong phần của khung con này, AAS được sử dụng để giao tiếp với các SS có khả năng AAS. AAS cũng được hỗ trợ trong UL. - Truyền kênh con ở đường lên là một tùy chọn cho một SS, và sẽ chỉ được sử dụng nếu các tín hiệu BS có khả năng giải mã các truyền dẫn như vậy. 3.4.3.2) Symbol OFDM Ở miền thời gian, biến đổi Fourier ngược tạo ra dạng sóng OFDM, chu kỳ thời gian này được xem như thời gian symbol hữu ích T b, một bản sao T g sau cùng của chu kỳ symbol hữu ích, được quy ước là CP (tiền tố chu kỳ), được sử dụng để thu thập đa đường, trong khi duy trì sự trực giao. Hình 3.3 minh họa cấu trúc này. Hình 3.3: Cấu trúc thời gian symbol OFDM Ở miền tần số, một symbol OFDM bao gồm các sóng mang con, số sóng mang con xác định kích thước FFT được sử dụng. Có ba loại sóng mang con: - Sóng mang con dữ liệu: cho truyền dữ liệu. - Sóng mang con pilot: cho các mục đích ước lượng khác nhau. - Sóng mang con Null: không truyền dẫn, dùng cho các dải bảo vệ, các sóng mang con không hoạt động và sóng mang con DC. Hình 3.4: Mô tả symbol OFDM miền tần số GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  43. 43 Mục đích của các dải bảo vệ là để cho phép tín hiệu suy yếu và tạo ra FFT dạng hình “brick wall”. Các sóng mang phụ không hoạt động chỉ trong trường hợp truyền kênh con bởi một SS. 3.4.3.3) Cấu trúc khung - OFDM PHY hỗ trợ truyền dựa theo khung. Một khung chứa khung con đường xuống và đường lên. Khung con đường xuống chỉ chứa một PHY PDU đường xuống. Một khung con đường lên chứa các khoảng tranh chấp được sắp xếp cho các mục đích “intial ranging”, yêu cầu dải thông và một hoặc nhiều PHY PDU, mỗi PHY PDU được truyền từ một SS khác nhau. - Một PHY PDU đường xuống bắt đầu với một “preamle”, được sử dụng cho đồng bộ PHY. Sau “preamble” là một burst FCH. Burst FCH là một symbol OFDM và được truyền sử dụng BPSK tốc độ 1/2 với sơ đồ mã hóa bắt buộc. FCH chứa DLFP (tiền tố khung đường xuống) chỉ ra burst profile và chiều dài của một hoặc nhiều burst đường xuống theo ngay sau FCH. Một Bản tin DL-MAP, nếu được truyền trong khung hiện thời, sẽ là MAC PDU đầu tiên trong burst theo sau FCH. Một bản tin UL-MAP sẽ theo sau ngay hoặc DL-MAP (nếu nó được truyền) hoặc DLFP. Nếu các bản tin UCD và DCD được truyền trong khung, chúng sẽ theo ngay sau các bản tin DL-MAP và UL-MAP. Mặc dù burst số 1 chứa các bản tin điều khiển MAC quảng bá, nó không cần sử dụng điều chế/mã hóa được xem là mạnh nhất. Điều chế/mã hóa hiệu quả hơn có thể được sử dụng nếu nó được hỗ trợ và có thể dùng được tới tất cả các MS của một BS. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  44. 44 Hình 3.5: Cấu trúc khung OFDM với TDD - Theo sau FCH là một hoặc nhiều burst đường xuống, mỗi burst được truyền với burst profile khác nhau. Mỗi burst đường xuống chứa một số nguyên symbol OFDM. Vị trí và profile của burst đường xuống đầu tiên được chỉ ra trong DLFP. Vị trí và profile của số burst tiếp theo có thể lớn nhất cũng sẽ được chỉ ra trong DLFP. Vị trí và profile của các burst khác được chỉ trong DL-MAP. - Khung con đường DL có thể tùy chọn chứa miền STC nơi mà tất cả các burst DL được mã hóa STC. - Với PHY OFDM, một burst PHY, hoặc một burst PHY đường xuống hoặc một burst PHY đường lên, chứa một số nguyên symbol OFDM, mang các bản tin MAC, như các MAC PDU. - Trong mỗi khung TDD, TTG và RTG sẽ được chèn giữa khung con đường xuống và đường lên và ở cuối mỗi khung, tách biệt ra cho phép BS chuyển hướng. - Trong hệ thống FDD, cấu trúc khung UL và DL tương tự, ngoại trừ UL và DL được truyền trên các kênh riêng rẽ. Khi các SS là H-FDD, BS phải đảm bảo rằng không lập lịch để truyền và nhận cùng thời điểm. 3.4.4) Đặc tả PHY WirelessMAN- OFDMA 3.4.4.1) Đặc điểm GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  45. 45 - Lớp PHY OFDMA WirelessMAN cũng được thiết kế dựa trên điều chế OFDM. WirelessMAN-OFDMA, lược đồ OFDM 2048 sóng mang OFDM. Đa truy nhập được thực hiện bằng cách gán một tập con các sóng mang cho một máy thu cá nhân, và vì vậy nó được xem như là OFDMA. Nó hỗ trợ kênh con ở UL và DL. Chuẩn hỗ trợ 5 lược đồ kênh con khác nhau. - Lớp PHY OFDMA hỗ trợ hai họat động TDD và FDD. CC (mã xoắn) là lược đồ mã hóa được yêu cầu và các tốc độ mã hóa giống nhau được hỗ trợ như được hỗ trợ bởi lớp PHY OFDM. Các lược đồ mã hóa BTC và CTC được hỗ trợ tùy chọn. Các mức điều chế giống nhau cũng được hỗ trợ. STC và AAS với SDMA được hỗ trợ, cũng như MIMO. 3.4.4.2) Symbol OFDMA - Ở miền thời gian, biến đổi Fourier ngược tạo ra dạng sóng OFDMA, chu kỳ thời gian này được xem như thời gian symbol hữu ích T b. Một bản sao Tg sau cùng của chu kỳ symbol hữu ích, được quy ước là CP, được sử dụng để thu thập đa đường, trong khi duy trì sự trực giao. Hình 3.6 minh họa cấu trúc này. Hình 3.6: Cấu trúc thời gian symbol OFDMA - Ở miền tần số, một symbol OFDMA bao gồm các sóng mang con, số sóng mang xác định kích thước FFT sử dụng. Hình 3.7: Mô tả tần số OFDMA (ví dụ với lược đồ 3 kênh con) - Trong chế độ OFDMA, các sóng mang con hoạt động được chia thành các tập sóng mang con, mỗi tập được xem như một kênh con. Ở đường xuống, một kênh con có thể được dành cho (nhóm) các máy thu khác nhau; ở đường lên, một máy GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  46. 46 phát có thể được gán cho một hoặc hơn các kênh con, nhiều máy phát có thể truyền đồng thời. Các sóng mang con tạo ra một kênh con có thể, nhưng không cần thiết phải kề nhau. Symbol được chia thành các kênh con logic để hỗ trợ khả năng mở rộng, đa truy nhập, và các khả năng xử lý ma trận ăng ten tiên tiến. 3.4.4.3) Cấu trúc khung - Trong hệ thống TDD, mỗi khung ở truyền dẫn đường xuống bắt đầu với một preamble và theo sau bởi một đoạn truyền dẫn DL và một đoạn truyền dẫn UL. Ở mỗi khung, TTG và RTG sẽ được chèn giữa đường lên và đường xuống ở cuối mỗi khung cho phép BS chuyển hướng. - Trong các hệ thống TDD và H-FDD, các hạn định cho phép trạm thuê bao phải được thực hiện bởi một SSRTG và bởi một SSTTG. BS sẽ không truyền thông tin đường xuống tới một trạm muộn hơn (SSRTG+RTD) trước định vị đường lên được lập lịch của nó, và sẽ không truyền thông tin đường xuống tới nó sớm hơn (SSTTG+RTD) sau tận cùng của định vị đường lên được lập lịch, ở đó RTD biểu thị trễ toàn phần. Các tham số SSRTG và SSTTG có khả năng được cung cấp bởi MS tới BS dựa vào yêu cầu trong thời gian vào mạng. Hình 3.8: Phân bố thời gian-khung TDD (chỉ với miền bắt buộc). - Hai kênh con được truyền đầu tiên trong symbol dữ liệu đầu tiên của đường xuống được gọi là FCH. FCH sẽ được truyền sử dụng QPSK tốc độ 1/2 với 4 lần lặp sử dụng sơ đồ mã hóa bắt buộc (thông tin FCH sẽ được gửi trên 4 kênh con liền GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  47. 47 kề) trong một vùng PUSC. FCH chỉ rõ chiều dài của bản tin DL-MAP mã hóa được sử dụng cho bản tin DL-MAP. - Những chuyển tiếp giữa điều chế và mã hóa xảy ra trên các biên symbol OFDMA ở miền thời gian và trên các kênh con trong một symbol OFDMA trong miền tần số. 3.4.5. Lớp con hội tụ truyền dẫn TC Giữa PHY và MAC là một lớp con hội tụ truyền dẫn TC. Lớp này thực hiện sự biến đổi các MAC PDU độ dài có thể thay đổi vào trong các khối FEC độ dài cố định (cộng thêm có thể là một khối được rút ngắn vào đoạn cuối) của mỗi cụm. Lớp TC có một PDU có kích thước khớp với khối FEC hiện thời bị đầy. Nó bắt đầu với 1 con trỏ chỉ ra vị trí đầu mục MAC PDU tiếp theo bắt đầu bên trong khối FEC. Xem hình 3.9. Preamble Khối PDU khởi Khối PDU đầu Khối PDU thứ 2 đầu trong TC tiên khởi đầu khởi đầu trong ngay trước trong TC hiện tại TC hiện tại PDU của lớp con TC P = con trỏ 1 byte Hình 3.9: Định dạng TC PDU Khuôn dạng PDU TC cho phép đồng bộ hoá MAC PDU tiếp sau trong trường hợp khối FEC trước đó có những lỗi không thể phục hồi được. Không có lớp TC, một SS hay BS nhận sẽ mất toàn bộ phần còn lại của một cụm khi có một lỗi không thể sửa chữa xuất hiện. 3.5) Kết luận chương Nội dung của chương đã cho thấy các yêu cầu kỹ thuật đối với WiMAX trong lớp vật lý, lớp liên kết dữ liệu của mô hình OSI, điều này giúp ta càng hiểu rõ hơn về công nghệ WiMAX từ đó gặp thuận lợi hơn trong việc ứng dụng Wimax vào thực tế. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  48. 48 CHƯƠNG 4: ẢNH HƯỞNG CỦA NHIỄU TRONG WIMAX VÀ CÁC BIỆN PHÁP KHẮC PHỤC 4.1) Giới thiệu chương Trong chương này, em sẽ trình bày những trở ngại lớn được thể hiện trong kênh không dây băng rộng thay đổi theo thời gian. Xác định các ảnh hưởng cơ bản của nhiễu trong các kênh băng rộng không dây. Từ đó, tìm ra những biện pháp đối phó nhằm duy trì việc truyền thông tốt trong môi trường khắc nghiệt. 4.2) Sơ đồ khối của hệ thống thông tin vô tuyến - Tất cả các hệ thống truyền thông số vô tuyến đều có một khối kiến trúc nhất định, như được thể hiện trong hình 4.1 sau: Sơ đồ 4.1: Hệ thống thông tin số vô tuyến - Bất kỳ một mạng không dây được tương thích một cách hợp lý, thì toàn bộ hệ thống đều được phân chia thành ba thành phần sau đây: máy phát, kênh và máy thu. - Máy phát nhận các gói bit từ lớp giao thức cao hơn và gửi các bit này ở dạng sóng trường điện từ đến máy thu. Các bước thực hiện trong miền số là mã hóa và điều chế. Nhìn chung, mục đích chính của việc mã hóa làm tăng thêm độ dư thừa để giảm lỗi khi truyền và cho phép sửa lỗi tại máy thu. Các tín hiệu điều chế số được chuyển đổi thành dạng sóng tương tự bởi bộ DAC và sau đó chuyển đổi lên tần số GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  49. 49 cao. Tín hiệu cao tần này sẽ được tán xạ với dạng sóng trường điện từ bởi các ăng- ten phù hợp. - Máy thu hoạt động ngược lại với hoạt động của máy phát. Sau khi chuyển xuống tần số thấp và lọc để loại bỏ những tần số không mong muốn. Tín hiệu băng tần cơ sở sẽ được chuyển thành tín hiệu số bởi bộ ADC, tín hiệu này được giải điều chế và giải mã để khôi phục lại tín hiệu đó thành chuỗi bit gốc. - Kênh truyền thông biễu diễn môi trường vật lý giữa máy phát và máy thu và đây là nơi có ảnh hưởng lớn đến chất lượng truyền tín hiệu sẽ dược đề cập ở chương sau. - Sau đây là những mô tả về ảnh hưởng có quy mô lớn trong kênh vô tuyến băng rộng, đó là hiện tượng suy hao, tạo bóng, nhiễu đồng kênh(CCI),multipath và hiện tượng Doppler trong hệ thống thông tin di động. 4.3) Ảnh hưởng của nhiễu trong hệ thống vô tuyến 4.3.1) Suy hao(pathloss) - Sự khác nhau rõ rệt giữa kênh vô tuyến và hữu tuyến là lượng công suất truyền đạt đến máy thu. Giả sử rằng ăng-ten đẳng hướng được sử dụng, như thể hiện ở hình 4.2, năng lượng của tín hiệu truyền mở rộng trên mặt các hình cầu song song, vì vậy năng lượng nhận được tại ăng ten thu có khoảng cách d tỷ lệ nghịch với diện tích bề mặt cầu, (4πd 2). Suy hao được tính theo công thức lan truyền không gian tự do: 2G G P P t r (4.1) r t 4 d 2 trong đó P r và P t lần lượt công suất thu và phát và λ là chiều dài của bước sóng. Nếu ăng-ten hướng tính được dùng tại máy phát và máy thu, thì sẽ có độ lợi là G t và Gr và công suất nhận tăng được hay không là nhờ vào độ lợi của ăng-ten. Một mặt quan trọng khác của công thức(4.1) là từ c=f c.λ nên λ=c/f c , công suất nhận được sẽ giảm bình phương lần theo tần số sóng mang. Hay nói một cách khác, với công suất phát đã cho, thì sẽ có khoảng suy giảm khi tần số tăng lên. Điều này có ảnh hưởng quan trọng đến các hệ thống có tốc độ dữ liệu cao. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  50. 50 - Để tính toán chính xác, người ta thường dùng công thức kinh nghiệm sau đây để tính toán cho suy hao của kênh kinh nghiệm: d0 Pr Pt P0 (4.2) d - Trong công thức (4.2) có thêm ba thành phần là P 0 , d0 và α. P0 là công suất suy hao đo được trên khoảng cách tham chiếu là d 0 và thường được chọn là 1m. Trên thực tế, P0 thường được lấy xấp sỉ là một vài dB. α là số mũ suy hao và đại lượng này được cho trong bảng. Hình 4.2: Mô hình truyền sóng trong không gian tự do - Để khắc phục được nhiễu do sự suy hao đường truyền này thì cần chú ý những điều sau: + Chiều cao của ăng-ten phải được tính đến là có chiều cao phù hợp. + Tần số sóng mang sử dụng. + Khoảng cách giữa hai ăng-ten phát và thu. 4.3.2) Che chắn(shadowing) - Như ta đã biết, sự suy hao ảnh hưởng đến công suất tại máy thu có liên quan đến khoảng cách giữa máy phát và máy thu. Tuy nhiên, còn nhiều nhân tố khác có thể có ảnh hưởng lớn đến tổng công suất thu được. Ví dụ, cây cối và nhà cửa có thể GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  51. 51 được đặt tại vị trí ở giữa máy phát và máy thu, những vật cản này sinh ra đường truyền tạm thời và gây ra sự suy giảm tạm thời cường độ tín hiệu thu. Hay nói một cách khác, đường truyền thẳng tạm thời này sẽ làm cho công suất thu bất thường, và được gọi là hiện tượng che chắn(shadowing), như được trình bày ở hình 4.3 sau đây: Hình 4.3: Hiện tượng che chắn trên đường truyền tín hiệu Xét trong vùng có phạm vi nhỏ thì hiện tượng suy hao đường truyền và che chắn là không đáng kể và có giá trị cho phép mà không làm ảnh hưởng đến chất lượng tín hiệu thu tại máy thu. 4.3.3) Nhiễu đồng kênh CCI Đây là một loại can nhiễu xảy ra khi hai tín hiệu phát đi ở cùng một tần số đến cùng một bộ thu. Trong thông tin tế bào thì can nhiễu thường được gây ra bởi một cell khác hoạt động ở cùng tần số (hình 4.4) Hình 4.4: Giao thoa xuyên kênh GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  52. 52 - Để hình dung, chúng ta lấy ví dụ ném hòn đá xuống nước. Việc ta ném nhiều hòn đá xuống nước tương đương như nhiều cuộc gọi khác nhau cùng bắt đầu. Vậy trạm gốc ở vị trí nào đó trong hồ làm sao phân biệt được tín hiệu của nguồn nào và từ hướng nào đến. Đây chính là vấn đề của giao thoa xuyên kênh hay còn gọi là nhiễu đồng kênh. - Như chúng ta đã biết, các hệ thống ăngten tập trung đều tín hiệu trong một vùng không gian rộng lớn. Các tín hiệu có thể không đến được với người sử dụng mà ta mong muốn, nhưng chúng có thể trở thành can nhiễu cho những người sử dụng khác có cùng một tần số trong cùng một tế bào hay những tế bào kế cận. 4.3.4) Hiện tượng đa đường(multipath) - Multipath là hiện tượng khi mà tín hiệu radio được phát đi bị phản xạ trên các bề mặt vật thể tạo ra nhiều đường tín hiệu giữa trạm gốc và thiết bị đầu cuối sử dụng. Kết quả là tín hiệu đến các thiết bị đầu cuối sử dụng là tổng hợp của tín hiệu gốc và các tín hiệu phản xạ.(hình 4.5) Chúng có thể yếu đi hay mạnh lên. Đây chính là vấn đề của nhiễu đa đường Hình 4.5: Hiện tượng multipath Các vấn đề có liên quan đến nhiễu đa đường: - Một trong những hệ quả của hiện tượng multipath mà chúng ta không mong muốn là các tín hiệu sóng tới từ những hướng khác nhau khi tới bộ thu sẽ có sự trễ pha và vì vậy khi bộ thu tổng hợp các sóng tới này sẽ không có sự phối hợp về pha(hình 4.6) GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  53. 53 Hình 4.6: Hai tín hiệu multipath - Điều này sẽ ảnh hưởng đến biên độ tín hiệu, biên độ tín hiệu sẽ tăng khi các tín hiệu sóng tới cùng pha và sẽ giảm khi các tín hiệu này ngược pha. Trường hợp đặc biệt nếu hai tín hiệu ngược pha 1800 thì tín hiệu sẽ bị triệt tiêu(hình 4.7) Hình 4.7: Hai tín hiệu multipath ngược pha nhau 1800 Hiện tượng pha đinh: Khi sóng của các tín hiệu đa đường ngược pha, cường độ tín hiệu sẽ bị giảm. Hiện tượng này vẫn được biết đến là “Rayleigh pha đinh” hay còn gọi là “pha đinh nhanh”. Sự suy giảm thay đổi liên tục hình thành những khe như hình chữ V. Cường độ tín hiệu bị thay đổi thất thường và rất nhanh chóng gây ra sự suy giảm về chất lượng.(hình 4.8) GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  54. 54 Hình 4.8: Hiện tượng pha Một hệ quả nữa của hiện tượng multipath làđinh “trải trễ” tức là khi bị phản xạ thành nhiều tín hiệu khác nhau thì các tín hiệu sẽ đến bộ thu ở những thời điểm khác nhau gây ra hiện tượng giao thoa liên ký tự(intersymbol interference). Khi xảy ra hiện tượng này thì tốc độ bit sẽ tăng lên làm giảm đáng kể chất lượng của hệ thống. 4.3.5) Hiện tượng Doppler Hiện tượng Doppler cũng là một hiện tượng nhiễu khác cũng khá phổ biến trong các hệ thống thông tin di động. Hiện tượng Doppler được xác định khi một nguồn sóng và máy thu đang di chuyển liên quan đến với nhau. Khi máy thu di chuyển về phía trước (cùng chiều với máy phát ra nguồn sóng), tần số của tín hiệu thu sẽ cao hơn tín hiệu nguồn. Hình 4.9 là một ví dụ về sự thay đổi về cường độ của thiết bị âm thanh của xe ôtô khi nó di chuyển cùng chiều và ngược chiều với hai observer GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  55. 55 Hình 4.9: Hiện tượng Doppler 4.4) Các biện pháp nhằm giảm ảnh hưởng của nhiễu được sử dụng trong WiMAX 4.4.1) Tái sử dụng tần số phân đoạn - Đây là một phương pháp nhằm nâng cao chất lượng kết nối của các thuê bao do ảnh hưởng của can nhiễu cùng kênh(CCI) - Trong WiMAX di động hỗ trợ tái sử dụng tần số bằng 1, nghĩa là tất cả các tế bào /sector hoạt động trên cùng một kênh tần số nhằm tối đa hóa hiệu quả sử dụng phổ. Tuy nhiên, do can nhiễu cùng kênh(CCI) rất mạnh trong triển khai tái sử dụng tần số bằng 1, cho nên các thuê bao tại rìa tế bào giảm cấp chất lượng kết nối. Với WiMAX di động, các thuê bao hoạt động trên các kênh con, chỉ chiếm một đoạn nhỏ của toàn bộ băng thông kênh; vấn đề can nhiễu biên tế bào có thể được khắc phục dễ dàng bằng việc tạo cấu hình sử dụng kênh con một cách hợp lý mà không cần viện đến quy hoạch tần số truyền thống. - Trong WiMAX di động, việc tái sử dụng kênh con linh hoạt được tạo điều kiện dễ dàng nhờ sự phân đoạn kênh con và vùng hoán vị. Một đoạn là một phần nhỏ các kênh con OFDMA khả dụng (một đoạn có thể bao gồm tất cả các kênh con). Một đoạn được sử dụng cho triển khai một trường hợp MAC duy nhất. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  56. 56 - Vùng hoán vị là một số các ký tự OFDMA liền kề nhau trong DL hoặc UL sử dụng cùng một phép hoán vị. Khung con của DL hoặc UL có thể chứa nhiều hơn một vùng hoán vị - Mô hình tái sử dụng kênh con có thể được cấu hình sao cho các thuê bao gần sát trạm gốc hoạt động trong vùng có tất cả các kênh con khả dụng. Trong khi đó, đối với các thuê bao rìa, mỗi tế bào hoặc sector hoạt động trong vùng chỉ có một phần nhỏ của tất cả các kênh con là khả dụng. Trong hình 4.10, F1, F2 và F3 biểu thị các tập hợp kênh con khác nhau trong cùng một kênh tần số. Với cấu hình này, tái sử dụng tần số bằng một “1” của toàn tải được duy trì cho các thuê bao trung tâm để tăng tối đa hiệu quả phổ, và tái sử dụng tần số phân đoạn được cài đặt cho các thuê bao rìa nhằm đảm bảo chất lượng kết nối và thông lượng của thuê bao rìa. Quy hoạch tái sử dụng kênh con có thể được tối ưu hóa một cách năng động qua các sector hoặc các tế bào dựa trên tải của mạng và các điều kiện can nhiễu trên cơ sở từng khung một. Do vậy, tất cả các tế bào hoặc các sector đều có thể hoạt động trên cùng một kênh tần số mà không cần gì đến quy hoạch tần số. Hình 4.10: Mô hình tái sử dụng tần số phân đoạn 4.4.2) Các biện pháp giảm pha đinh - Đặc tính pha-đinh là sự khác nhau quan trọng nhất giữa việc thiết kế hệ thống thông tin vô tuyến và hữu tuyến. Do pha-đinh lựa chọn tần số là nổi bật nhất trong các kênh băng rộng- và do độ rộng băng của kênh băng rộng là lớn hơn rất nhiều độ rộng băng phù hợp BC –nên chúng ta đề cập đến các kênh với sự phân tán thời gian hay lựa chọn tần số trong pha-đinh băng rộng và đến các kênh chỉ với sự phân tán GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  57. 57 về tần số hay lựa chọn thời gian trong pha-đinh băng hẹp. Bây giờ, chúng ta xem xét và chỉ ra sự khác nhau giữa pha-đinh băng rộng và pha-đinh băng hẹp để từ đó các biện pháp khắc phục. 4.4.2.1) Pha đinh băng hẹp(pha đinh phẳng) - Ảnh hưởng của pha đinh này là đáng kể khi khoảng cách truyền tăng, lúc này cường độ tín hiệu thu sẽ bị giảm đáng kể vì suy hao thay đổi đáng kể. Tính di chuyển của các thuê bao trên khoảng cách lớn(>>λ) và sự thay đổi đặc điểm địa hình, sẽ ảnh hưởng đến suy hao và công suất thu thay đổi chậm. - Có rất nhiều các kỹ thuật khác nhau được sử dụng để khắc phục pha-đinh băng hẹp, nhưng cách phổ biến nhất và thường được dùng nhất là phân tập.Trong thông tin vô tuyến tốc độ cao, chỉ có sự phân tập mới khắc phục được hiện tượng pha- đinh này . Các loại phân tập thường dùng là: + Phân tập thời gian - Hai phương pháp quan trọng của phân tập thời gian là mã hóa/đan xen và điều chế thích nghi (AMC). Kỹ thuật mã hóa và đan xen đưa vào một cách linh hoạt để tăng độ dư thừa trong tín hiệu được truyền đi; điều này làm cho tốc độ của tín hiệu giảm và vì vậy mà giảm đươc lỗi bit. - Các máy phát cùng với việc điều chế thích nghi sẽ có thông tin về kênh truyền. Và vì vậy, chúng sẽ chọn kỹ thuật điều chế mà đạt được tốc độ dữ liệu cao nhất có thể được trong khi vẫn giữ được BER ở mức yêu cầu. 1.5 M 1 Pb 0.2e (4.3) - Trong phương trình (4.3), với M tăng, BER cũng tăng. Vì tốc độ dữ liệu tỷ lệ với log2M, chúng ta muốn chọn kích thước mẫu tự lớn nhất để mà đạt được BER theo yêu cầu. Nếu kênh có sự suy giảm mạnh thì sẽ không có ký hiệu nào được gửi đi để tránh tạo lỗi. Điều chế thích nghi và mã hóa là một phần tích hợp trong chuẩn WiMAX. Và được để cập kỹ hơn trong phần sau. + Phân tập không gian GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  58. 58 - Phân tập theo không gian là một dạng phân tập khác cũng khá phổ biến và có hiệu quả, thường được thực hiện bằng cách sử dụng hai hay nhiều hơn các ăng-ten tại cả máy phát và máy thu hay chỉ có ở máy phát hoặc máy thu. Phân tập này còn được biết đến với tên gọi là hệ thống MIMO. Dạng đơn giản nhất của phân tập theo không gian bao gồm hai ăng-ten thu, đó là nơi mà hai tín hiệu mạnh nhất được chọn. Nếu các ăng-ten được đặt cách nhau một cách phù hợp, thì hai tín hiệu nhận được sẽ chịu ảnh hưởng một cách xấp xỉ hiện tượng pha-đinh không tương quan với nhau. Kiểu phân tập này được gọi một cách hợp lý là phân tập lựa chọn và được minh họa trong hình 4.11 như sau: Hình 4.11: Phân tập lựa chọn hai nhánh đơn loại đi hầu hết sự suy giảm mạnh - Kỹ thuật đơn giản này đã loại bỏ hoàn toàn một nửa tín hiệu nhận được nhưng hầu hết sự suy giảm mạnh đã được tránh và SNR trung bình cũng được tăng lên. Các dạng phức tạp hơn của phân tập không gian bao gồm các mảng ăng-ten(hai hay nhiều hơn hai ăng-ten) với tỷ số kết nối lớn nhất, phân tập phát sử dụng mã hóa không gian- thời gian, và kết nối sự phân tập giữa đầu phát và đầu thu. Các kỹ thuật báo hiệu không gian được mong đợi để quyết định việc đạt được hiệu suất phổ cao trong WiMAX. + Phân tập theo tần số GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  59. 59 - Phương pháp này được sử dụng để khắc phục hiện tượng pha đinh băng rộng và sẽ được đề cập kỹ hơn ở phần sau. 4.4.2.2) Pha-đinh băng rộng(pha đinh lựa chọn tần số) - Như đã biết, pha-đinh lựa chọn tần số gây ra sự phân tán trong miền thời gian, điều này làm cho các ký hiệu lân cận giao thoa với nhau trừ khi T>>τ max . Do tốc độ dữ liệu tỷ lệ với 1/T , hệ thống có tốc độ dữ liệu cao hầu như lúc nào cũng có lan truyền trễ đa đường đáng kể, khi T<<τmax, và kết quả là bị nhiễu liên ký hiệu nghiêm trọng. Việc lựa chọn kỹ thuật để chống lại nhiễu ISI một cách có hiệu quả là một quyết định quan trọng trong việc thiết kế bất kỳ hệ thống tốc độ cao. Rất nhanh chóng là OFDM là sự lựa chọn phổ biến nhất cho việc chống lại ISI. 4.4.2 3. Bộ cân bằng - Bộ cân bằng Equalizer được dùng để loại bỏ nhiễu liên ký hiệu (Intersymbol Interference_ISI) và các nhiễu nhiệt (noise) được thêm vào. Nhiễu ISI sinh ra do sự trải trễ của các xung phát dưới tác động phân tán tự nhiên của kênh truyền. Điều này dẫn đến sự chồng lấn của các xung kế cận nhau gây ra nhiễu liên ký tự. Chẳng hạn như trong môi trường tán xạ đa đường, một ký hiệu có thể được truyền theo các đường khác nhau, đến máy thu ở các thời điểm khác nhau, do đó có thể giao thoa với các ký tự khác. Hình 4.12: Sơ đồ khối của mô hình kênh truyền Trên hình 4.12, ta thấy tín hiệu x(t) được diều chế bốn mức (Pulse Amplitude Modulated_PAM), tín hiệu x(t) được phát qua kênh có đáp ứng xung h(t). Nhiễu GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  60. 60 nhiệt noise n(t) được thêm vào. Ta thấy tín hiệu thu được là r(t) đã bị méo dạng so với tín hiệu phát x(t). - Để khắc phục nhiễu ISI và cải thiện chất lượng của hệ thống, có nhiều phương pháp khác nhau nhưng phương pháp được đề cập nhiều nhất là sử dụng bộ cân bằng Equalizer được sử dụng để bù lại các đặc tính tán xạ thời gian của kênh truyền. Hình 4.13. Kênh truyền và bộ cân bằng 4.4.2.4) Mã hóa và điều chế thích nghi - Mã hóa và điều chế thích nghi là một phương pháp được sử dụng trong phân tập theo thời gian . Trong hệ thống WiMAX, việc sử dụng mã hóa và điều chế thích nghi với mục đích là thích nghi với sự dao động của kênh truyền do ảnh hưởng của nhiễu. Với đặc tính này sẽ cho phép hệ thống có thể khắc phục được những ảnh hưởng của pha đinh lựa chọn thời gian. Hình 4.14: Mối quan hệ giữa vùng phủ sóng và phương pháp điều chế được sử dụng GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  61. 61 Ý tưởng cơ bản này hoàn toàn đơn giản và được trình bày như sau: + Việc truyền dữ liệu tốc độ cao có thể đạt được khi kênh truyền tốt, tốc độ truyền sẽ thấp hơn nếu kênh truyền không tốt, với mục đích là tránh gây ra lỗi. Tốc độ dữ liệu thấp có thể đạt được bằng cách sử dụng chòm điểm nhỏ, như là QPSK, và các mã có tốc độ sửa lỗi thấp, như là mã chập và mã tourbo ½. Tốc độ dữ liệu cao hơn có thể đạt được với chòm điểm lớn, như là 64QAM, và mã hóa sửa lỗi chống nhiễu, ví dụ, mã chập hay mã turbo có tốc độ ¾ hay mã LDPC. + Sơ đồ khối thể hiện nguyên lý hoạt động của hệ thống mã hóa điều chế thích nghi AMC được cho bởi hình 4.15 sau đây: Sơ đồ 4.15: Sơ đồ khối mã hóa và điều chế thích nghi (AMC) - Để đơn giản, đầu tiên chúng ta xem một hệ thống người dùng truyền nhanh tín hiệu thông qua kênh với SINR luôn thay đổi; ví dụ, kênh truyền phụ thuộc vào pha- đinh. Mục đích của máy phát là truyền dữ liệu từ hàng bit nhanh đến mức có thể, và được giải điều chế và giải mã một cách chính xác tại máy thu. Hồi tiếp (feedback) sẽ quyết định mã hóa và điều chế nào được sử dụng để phù hợp với điều kiện của kênh truyền thông qua tham số SINR. Máy phát cần biết giá trị SINR của kênh ( ), giá trị này được xác định khi SINR nhận được  r chia cho công suất phát Pt, là một hàm của  . Do đó, SINR nhận được là  r Pt  Hình 4.16 minh họa việc sử dụng sáu cách mã hóa và điều chế trong số các định dạng chung của WiMAX. Nó có thể đạt được các mức hiệu suất phổ khác nhau tùy thuộc vào phương pháp mã hõa và điều chế sử dụng. Điều này cho phép dung lượng tăng lên khi SINR tăng lên theo công thức Shannon CTrong log 2 (1 SNR). GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  62. 62 trường hợp này, tốc độ dữ liệu thấp nhất là QPSK và mã turbo tốc độ ½; tốc độ dữ liệu cao nhất trong định dạng của WiMAX là 64QAM và mã turbo tốc độ ¾. Thông lượng đạt được, được chuẩn hóa bởi độ rộng đã được xác định Hình 4.16: Thông lượng của các phương pháp điều chế và tốc độ mã hóa khác nhau. T (1 BLER)r log2 (M )bps / Hz (4.4) Trong đó: BLER là tỷ lệ block lỗi. r ≤1 là tốc độ mã hóa. M số điểm trong một chòm điểm. Ví dụ: 64QAM với tốc độ mã hóa là ¾ đạt được thông lượng tối đa là 4.5bps/Hz, khi BLER 0; QPSK với tốc độ mã hóa là ½ sẽ đạt được thông lượng trong trường hợp tốt nhất là 1bps/Hz. Kết quả được thể hiện ở đây là cho trường hợp lý tưởng của kiến thức kênh tối ưu và không truyền ngược lại như ARQ. Trong thực tế, viêc hồi tiếp sẽ bị trễ và có thể còn bị giảm do việc dự đoán kênh không chính xác hay lỗi trong kênh hồi tiếp về (feedback). Hệ thống WiMAX bảo vệ chặt chẽ các kênh hồi tiếp với việc sửa lỗi. Vì vậy, nguyên nhân chính gây ra sự suy giảm có thể suy giảm, điều này gây cho việc dự đoán kênh trở nên lỗi thời nhanh chóng. Theo kinh nghiệm, với tốc độ hơn GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  63. 63 30km/h trên tần số sóng mang 2,100MHz, thì các cấu hình hồi tiếp không cho phép thông tin trạng thái của kênh truyền một cách kịp thời và chính xác về máy phát. 4.4.2.5) Mã hóa kênh(channel coding) - Trong chuẩn IEEE 8.2.16e-2005, mã hóa kênh là một khối chức năng của lớp vật lý trong WiMAX. Nhiệm vụ của lớp này là làm cho tín hiệu truyền đi trong môi trường kênh ít bị sai do ảnh hưởng của pha-đinh. Làm cho phía thu dễ khôi phục lại tín hiệu. B E Frequency-selective R channel Channel Coding AWGN channel Flat fading (LOS) channel S/ N Hình 4.17: Vai trò của mã hóa kênh trong việc giảm BER và khắc phục lỗi gây ra cho tín hiệu truyền do pha-đinh Mã hóa kênh bao gồm ba bước sau đây: + Randomization: Ngẫu nhiên hoá luồng bit dữ liệu. Điều này sẽ tốt hơn cho việc sửa lỗi Forward Error Correction(FEC). Bộ Scrambler được thực hiện bởi các thanh ghi dịch hồi tiếp tuyến tính + FEC: Trong khối FEC gồm có ba khối nhỏ là Reed-Solomon Coder, Covolutional Coder, và khối Puncturing. Trong 3 khối này thì khối Reed-Solomon là phức tạp nhất. Khối này làm nhiệm vụ mã hoá dữ liệu và thêm các khoảng trống vào luồng bit để tạo điều kiện cho máy thu dò tìm và sửa lỗi. Trong khối này dữ liệu được mã hoá convolutional, tuy nhiên trước khi dữ liệu đưa vào khối GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  64. 64 convolutional encoder thì nó phải được mã hoá Reed-Solomon. Cuối cùng luồng dữ liệu sẽ được đưa qua khối Puncturing để giảm số bit truyền. + Interleaving: sắp xếp lại các khối của bit dữ liệu bằng cách đưa các bit mã hoá kề nhau vào các sóng mang không liên tiếp để bảo vệ chống lại lỗi burst. Kích cỡ khối bằng số bit được mã hóa trong symbol OFDM đơn giản. Kích cỡ của symbol được xác định bởi số sóng mang dữ liệu và cách điều chế. Data Randomizer FEC Bit Data to Interleaver to trans transmit mit Sơ đồ 4.18: Sơ đồ khối chức năng của mã hóa kênh Modulati 4.5) Kết luận chương on Chương này đã khái quát được những ảnh hưởng và biện pháp khắc phục nhiễu của hệ thống WiMAX. Và dựa vào đó để xây dựng mô hình toán học được nói kỹ trong chương tiếp theo. CHƯƠNG 5: ẢNH HƯỞNG CỦA KÊNH VÔ TUYẾN ĐẾN TRUYỀN DẪN TÍN HIỆU 5.1)Giới thiệu chương Khi nghiên cứu hệ thống thông tin, việc tạo ra các mô hình kênh đóng một vai trò quan trọng trong việc đánh giá chất lượng hoạt động của hệ thống. Mô hình kênh trình bày quan hệ vào ra của kênh ở dạng toán học hoặc thuật toán. Khi nghiên cứu các thuật toán, giải thuật để hạn chế những ảnh hưởng của kênh truyền, điều cần thiết là phải xây dựng các mô hình có thể xấp xỉ môi trường truyền dẫn một cách hợp lý. Chương này giới thiệu những đặc tính, ảnh hưởng của kênh truyền đồng thời đưa ra mô hình toán học của kênh vô tuyến di động. GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  65. 65 5.2) Kênh fading đa đường (multipath fading channel) Trong hệ thống thông tin vô tuyến, do các hiện tượng như phản xạ, tán xạ, khúc xạ, nhiễu xạ tín hiệu truyền từ bộ phát tới bộ thu sẽ bị tách thành nhiều thành phần (giống với tín hiệu gốc) và mỗi thành phần sẽ có những đường đi khác nhau. Hiện tượng này được gọi là truyền dẫn đa đường (multipath propagation). Để có thể hiểu rõ hơn bản chất của kênh fading đa đường, chúng ta sẽ tìm hiểu các khái niệm, hiện tượng xảy ra khi truyền tín hiệu qua kênh vô tuyến di động như các thông số của kênh fading đa đường, hiệu ứng doppler, mô hình đáp ứng xung, phân bố Rayleigh và Ricean 5.2.1) Thông số tán xạ thời gian (Time dispersion parameter) Để phân biệt, so sánh tính chất của các kênh truyền dẫn đa đường, người ta sử dụng các thông số tán xạ thời gian như mean excess delay (độ trễ trung bình vượt mức), rms delay spread (trễ hiệu dụng) và excess delay spread (trễ vượt mức). Các thông số này có thể được tính từ đặc tính công suất truyền tới bộ thu của các thành phần đa đường (power delay profile). Excess delay,  , là khoảng thời gian chênh lệch giữa tia sóng đang xét với thành phần đến bộ thu đầu tiên. Tính chất tán xạ thời gian (time dispersive) của kênh truyền dẫn đa đường dải rộng được thể hiện qua thông số mean excess delay,  , và rms delay spread,   .  được định nghĩa là moment cấp một của power delay profile [4]: 2  ak  k  P( k ) k  k k (5.1) 2 P( )  ak  k k k ak, P( k ) : biên độ, công suất thành phần thứ k của tín hiệu đa đường. Rms delay spread (  ) là căn bậc hai moment trung tâm cấp hai của power delay profile: 2 2     (5.2) với 2 2 2 ak  k  P( k ) k  2 k k 2 P (  ) (5.3) ak  k k k GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  66. 66 5.2.2) Dải thông kết hợp (coherence bandwidth) Trong khi delay spread là một hiện tượng tự nhiên do sự phản xạ và tán xạ khi truyền tín hiệu qua kênh vô tuyến, dải thông kết hợp, B c, được định nghĩa từ rms delay spread. Dải thông kết hợp là khoảng tần số mà kênh truyền có thể được coi là “phẳng” (nghĩa là kênh truyền cho qua tất cả các thành phần có phổ nằm trong khoảng tần số đó với độ lợi gần như nhau và pha gần như tuyến tính). Hai sóng sin có tần số chênh lệch nhau lớn hơn B c sẽ bị ảnh hưởng hoàn toàn khác nhau bởi kênh. Dải thông kết hợp được định nghĩa như là khoảng tần số mà hàm tương quan giữa các tín hiệu có tần số trong khoảng này lớn hơn 0.9, khi đó : 1 (5.4) Bc 50  Nếu chỉ cần hàm tương quan lớn hơn 0.5 thì: 1 B c (5.5) 5  5.2.3) Phổ doppler (doppler spectrum) Trong phần này, chúng ta sẽ tập trung tìm hiểu ảnh hưởng của doppler shift và việc truyền 1 sóng mang chưa điều chế tần số f c từ BS. Một MS di chuyển theo hướng tạo thành một góc i với tín hiệu nhận được từ thành phần thứ i như hình sau . MS di chuyển với vận tốc v, sau khoảng thời gian t đi được d=v. t . Khi đó đoạn đường từ BS đến MS của thành phần thứ i của tín hiệu sẽ bị thay đổi 1 lượng là l . B S l i i X Y d M v S GVHD: Nguyễn Thị Bảo Thư Hình 5.1: Hiệu ứngSVTH : Trần Công Chinh – DHDT3 Doppler
  67. 67 Theo hình vẽ ta có: (5.6) l d cos i Khi đó, pha của tín hiệu sẽ bị thay đổi một lượng: 2 v t c o s (5.7)  i  : Bước sóng của tín hiệu.  Dấu “-“ cho thấy độ trễ pha của sóng sẽ giảm khi MS di chuyển về phía BS. Tần số doppler được định nghĩa như là sự thay đổi pha do sự di chuyển của MS trong suốt khoảng thời gian t : 1  f (5.8) D 2 t Thay phương trình (5.7) vào phương trình (5.8) ta được: v f c o s f c o s (5.9) D  i m i Với fm=v/ =vfc/c là độ dịch tần doppler cực đại (từ tần số sóng mang được phát đi) do sự di chuyển của MS. Chú ý rằng, tần số doppler có thể dương hoặc âm phụ thuộc vào góc .i Tần số 0 0 doppler cực đại và cực tiểu là f m ứng với góc i =0 và 180 khi tia sóng truyền trùng với hướng MS di chuyển: 0 i =0 ứng với trường hợp tia sóng đi tới từ phía trước MS. 0 i =180 ứng với trường hợp tia sóng đi tới từ phía sau MS. Trong một môi trường truyền dẫn thực, tín hiệu đến bộ thu bằng nhiều đường với khoảng cách và góc tới khác nhau. Vì vậy, khi một sóng sin được truyền đi, vf thay vì chỉ bị dịch một khoảng tần số duy nhất (doppel shift f c cos ) tại đầu D c i thu, phổ của tín hiệu sẽ trải rộng từ f c(1-v/c) đến f c(1+v/c) và được gọi là phổ doppler. Khi ta giả thiết xác suất xảy ra tất cả các hướng di chuyển của mobile hay nói các khác là tất cả các góc tới là như nhau (phân bố đều), mật độ phổ công suất của tín hiệu tại bộ thu được cho bởi GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  68. 68 K 1 S( f ) 2 2 f m (5.10) f f c 1 f m Trong đó K là hằng số K Chú ý rằng, khi f=fc => S(f=fc)= 2 f m f= f m f c => S(f= ) =f m f c Hình dạng của S(f) được mô tả như hình 5.2 fc fc Hình 5.2: Phổ công suất- của tín hiệuf tại bộ thu +(hiệu ứng doppler) f c f 5.2.4) Trải doppler và thời mgian kết hợp (Doppler spreadm and coherence time) Delay spread và coherence bandwidth là các thông số mô tả bản chất tán xạ thời gian của kênh truyền. Doppler spread và coherence time là những thông số mô tả bản chất thay đổi theo thời gian của kênh truyền. Doppler spread B D là thông số đo sự mở rộng phổ gây ra bởi sự thay đổi theo thời gian của kênh vô tuyến di động và được định nghĩa là khoảng tần số mà phổ tần doppler nhận được là khác không. Khi một sóng sin tần số f c được truyền đi, phổ tín hiệu nhận được, phổ doppler, sẽ có các thành phần nằm trong khoảng tần số fc-fd đến f c+fd với f d là độ dịch tần do hiệu ứng doppler. Lượng phổ được mở rộng phụ thuộc vào f d là một hàm của vận tốc tương đối của MS và góc igiữa hướng di chuyển của MS và hướng của sóng tín hiệu tới MS. Nếu độ rộng phổ của tín hiệu GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  69. 69 lớn hơn nhiều so với BD, ảnh hưởng của doppler spread là không đáng kể tại bộ thu và đây là kênh fading biến đổi chậm (slow fading channel). Coherence time Tc chính là đối ngẫu trong miền thời gian (time domain dual) của doppler spread, dùng để mô tả sự tán xạ tần số và bản chất thay đổi theo thời gian của kênh truyền. Doppler spread và coherence time tỉ lệ nghịch với nhau: Tc 1/fm (5.11) Coherence time là khoảng thời gian mà đáp ứng xung của kênh truyền không thay đổi. Nói cách khác, coherence time là khoảng thời gian mà 2 tín hiệu có sự tương quan với nhau về biên độ. Nếu nghịch đảo của độ rộng phổ của tín hiệu lớn hơn nhiều so với coherence time của kênh truyền thì khi đó kênh truyền sẽ thay đổi trong suốt thời gian truyền tín hiệu và do đó gây méo ở bộ thu. Coherence time được định nghĩa là khoảng thời gian mà hàm tương quan lớn hơn 0.5, khi đó: 9 T c (5.12) 16 f m Với fm là tần số doppler cực đại: fm=v/ (4.42) Trên thực tế, nếu ta tính T c theo phương trình (4.11) thì trong khoảng T c tín hiệu truyền sẽ bị dao động nhiều nếu có phân bố Rayleigh, trong khi đó phương trình (5.12) lại quá hạn chế. Vì thế, người ta thường định nghĩa T c là trung bình nhân của hai phương trình trên: 9 0 . 4 2 3 (5.13) Tc 2 16 f m f m Định nghĩa của thời gian kết hợp ngụ ý rằng 2 tín hiệu đến bộ thu khác nhau một khoảng thời gian Tc sẽ bị ảnh hưởng khác nhau bởi kênh truyền. Đại lượng Nếu “lớn” Nếu “nhỏ” Nếu τ >> Nếu τ << : Τ càng lớn có ảnh hưởng đến thời gian Trễ trải phổ T: pha pha đinh ký hiệu và gây ra hiện tượng ISI τ đinh lựa phẳng chọn tần số GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  70. 70 Nếu 1/BC Nếu 1/BC Cung cấp một nguyên tắc là tìm được độ Dải thông > T: pha rộng băng thông của các sóng mang con kết hợp BC đinh phẳng đinh lựa là BSC ≈ BC/10, do đó số lượng cần thiết chọn tần của sóng mang con trong hệ thống số OFDM là L > 10xB/BC Trải phổ Nếu fc.v>> Nếu fc.v≤ Khi tỷ số fD/ BSC là không thể bỏ qua thì Doppler c; pha đinh c; pha đinh sự trực giao của các sóng mang con sẽ f  v nhanh chậm mất đi f c d c Thời gian Nếu Nếu TC≤ kết hợp TC TC>>T; T; pha pha đinh đinh nhanh chậm Bảng 5.3) Tóm tắt các thông số của pha đinh băng rộng 5.3) Mô hình đáp ứng xung của kênh fading Hình 5.4) Các tín hiệu multipath đến ở những thời điểm khác nhau Ta giả sử rằng có N tia đến máy thu, tín hiệu đầu ra của kênh như sau: N y t  an t  x t  n t (5.14) n 1 GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3
  71. 71 Trong đó, an(t) và τn(t) là suy hao và trễ truyền dẫn của thành phần đa đường thứ n. Lưu ý rằng suy hao và trễ truyền là một hàm thay đổi theo thời gian, điều này nói lên rằng, khi ô tô di chuyển thì hai đại lượng này cũng thay đổi theo. Ta xác định đường bao phức của tín hiệu thu Giả sử đầu vào kênh truyền song là tín hiệu điều chế có dạng: x t A t  cos 2 f C  t (5.15) Vì thực hiện mô phỏng dạng sóng bằng cách sử dụng các tín hiệu đường bao phức, nên ta phải xác định đường bao phức cho cả x(t) và y(t), từ đó tìm ra h(t,τ). Đường bao phức của tín hiệu phát ~x t : bằng cách kiểm tra (5.15) ta có ~x t A t  e t (5.16) Đườn bao của tín hiệu ~y t được xác định như sau, thay (5.15) vào (5.14) N y t  an t  A t  n t  cos2 f C t  n t  t  n t  (5.17) n 1 Có thể viết lại là: N j t  n t j2 fC n t j2 fCt y t an t  A t  n t  Re e e e  (5.18) n 1 Vì an(t) và A(t) đều là giá trị thực nên (5.18) còn được viết lại như sau N (5.19) j t n t j2 fCn t j2 fCt  y t Re an t  A t n t e e e  n 1  j t  n t ~ Từ (5.16), ta có: A t  n t  e x t  n t (5.20) N j2 fC n t ~ j2 fCt  Vì thế: y t Re  an t  e  x t  n t  e  (5.21) n 1  Suy hao đường truyền phức được định nghĩa là: ~ j2 fC n t an t an t  e (5.22) N ~ ~ j2 fCt  Vì vậy: y t Re  a t  x t  n t  e  (5.23) n 1  Vì vậy, đường bao phức của tín hiệu thu y(t) là: N ~ ~ ~ y t  an t  x t  n t (5.24) n 1 GVHD: Nguyễn Thị Bảo Thư SVTH : Trần Công Chinh – DHDT3