Nghiên cứu về tác động của quy mô đến mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam

pdf 20 trang Gia Huy 24/05/2022 1910
Bạn đang xem tài liệu "Nghiên cứu về tác động của quy mô đến mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfnghien_cuu_ve_tac_dong_cua_quy_mo_den_muc_do_chap_nhan_rui_r.pdf

Nội dung text: Nghiên cứu về tác động của quy mô đến mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam

  1. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 NGHIÊN CỨU VỀ TÁC ĐỘNG CỦA QUY MƠ ĐẾN MỨC ĐỘ CHẤP NHẬN RỦI RO CỦA CÁC NGÂN HÀNG THƢƠNG MẠI VIỆT NAM THE RESEARCH ON THE IMPACT OF BANK SIZE ON THE RISK-TAKING OF VIETNAMESE COMMERCIAL BANKS Lê Ngọc Lưu Quang, Lê Hồng Anh Trường Đại học Kinh tế, Đại học Huế lnlquang@hce.edu.vn TĨM TẮT Đề tài nghiên cứu tác động của quy mơ ngân hàng đến mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam. Tác giả sử dụng mơ hình nghiên cứu trên dữ liệu bảng của 28 ngân hàng thương mại cổ phần Việt Nam trong giai đoạn 2009 - 2017. Đề tài phát hiện quy mơ ngân hàng cĩ tương quan dương với mức độ chấp nhận rủi ro trong hệ thống các ngân hàng được kiểm tra trong giai đoạn sau khủng hoảng tài chính từ năm 2013 - 2017. Việc phân tích chi tiết các nhân tố cấu thành biến đo lường mức độ chấp nhận rủi ro (Z-score) cho thấy mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam chủ yếu thơng qua gia tăng mức độ địn bẩy tài chính. Ngồi ra, các yếu tố quản trị cũng được đưa vào mơ hình nghiên cứu như là một phương tiện để giải thích hệ quả của các cơ chế quản trị tại các ngân hàng thương mại Việt Nam với mức độ chấp nhận rủi ro. Nghiên cứu phát hiện các ngân hàng cĩ quản trị tốt hơn thì sẽ giảm thiểu rủi ro trong hoạt động. Từ khĩa: Quy mơ ngân hàng, mức độ chấp nhận rủi ro, quản trị, khủng hoảng tài chính, địn bẩy tài chính. ABSTRACT The primary aim of this study is to examine the impact of bank size on the risk-taking of Vietnamese commercial banks. The author uses the research model on the panel data of 28 Vietnamese commercial banks in the period of 2009 - 2017. The study found that bank size is positively correlated with the risk-taking in the listed banks was tested in the period after the financial crisis from 2013 to 2017. The detailed analysis of the constituents measuring the risk-taking (Z-score) showed its of Vietnamese commercial banks is mainly through increasing the financial leverage. In addition, corporate governance are also included in the research model as a means of explaining the consequences of governance mechanisms in Vietnamese commercial banks with risk tolerance. The study found that banks with better corperate governance will minimize operational risks. Keywords: Bank risk, risk-taking, corporate governance, financial crisis, bank leverage. 1. Đặt vấn đề Theo định hướng phát triển hệ thống ngân hàng thương mại Việt Nam, các ngân hàng cĩ xu hướng hợp nhất với nhau hoặc cĩ xu hướng mua lại các ngân hàng khác. Mục tiêu hướng đến là xây dựng một hệ thống ngân hàng thương mại hoạt động cĩ hiệu quả, nâng cao chất lượng và giảm thiểu rủi ro trong hoạt động. Kết quả quan trọng của việc sáp nhập và mua lại là sự gia tăng quy mơ ngân hàng. Tuy nhiên, liệu rằng khi gia tăng quy mơ cĩ đảm bảo được giảm thiểu rủi ro trong hoạt động của các ngân hàng thương mại hay khơng. Theo các chuyên gia trên thế giới, khi các ngân hàng gia tăng quy mơ đến ngưỡng “too big, too fail” hay cịn gọi là trạng thái quá lớn để sụp đổ, thì các ngân hàng cĩ nhiều động cơ để gia tăng mức độ chấp nhận rủi ro trong hoạt động để tìm kiếm lợi nhuận. Nguyên nhân là do khi quy mơ gia tăng đạt ngưỡng “too big, too fail” thì ngân hàng đĩ đã trở thành một đối tượng cĩ kết nối rộng khắp với nền kinh tế và sự sụp đổ của ngân hàng đĩ sẽ là một sự kiện lớn và thảm khốc, cĩ thể tác động xấu đến tồn bộ nền kinh tế của đất nước. Vì vậy, Chính phủ buộc phải đảm bảo đứng ra can thiệp nhằm tránh trường hợp các ngân hàng này phá sản hoặc mất khả năng thanh khoản để giữ cho hệ thống được ổn định và ngăn ngừa sự sụp đổ hệ thống tài chính của nền kinh tế. Thực tế, các chính sách bảo trợ liên quan đến các ngân hàng “too big, too fail” đã bị nhiều chuyên gia chỉ trích, là một trong những yếu tố chính làm méo mĩ các chính sách ưu đãi của các doanh nghiệp tài chính, đĩng vai trị then chốt trong cuộc khủng hoảng tài chính thế giới gần đây. Mặt trái của các chính sách này gây ra rủi ro đạo đức, bởi vì các doanh nghiệp tài chính cĩ thể nhận được hỗ trợ của chính phủ nên cĩ động cơ để gia tăng rủi ro hoạt động. Kết quả làm gia tăng những rủi ro mà tồn xã hội phải gánh chịu. 497
  2. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 Hiện nay cĩ nhiều nghiên cứu của các chuyên gia, nhà kinh tế về ảnh hưởng của quy mơ đến mức độ chấp nhận rủi ro của các cơng ty, tổ chức tài chính, ngân hàng Tuy nhiên, tác giả ghi nhận cĩ nhiều kết luận khác nhau về vấn đề này. Cĩ thể kể đến các nghiên cứu của Baker, Dean và Travis McArthur (2009); Balach và cộng sự, Sudhakar, Bruce Kogut và Hitesh Harnal (2010); Ray Barrell, Philip Davis, Tatiana Fic và Dilruba Karim (2011), Sanjai Bhagat và cộng sự (2015). Theo nghiên cứu của Sanjai Bhagat và cộng sự nhận thấy, quy mơ ngân hàng càng lớn thì mức độ chấp nhận rủi ro càng cao, thậm chí khi kiểm sốt các đặc điểm khác cĩ thể quan sát được, chẳng hạn như quản trị doanh nghiệp và cơ cấu sở hữu. Điều này phù hợp với quan điểm cho rằng các chính sách về "too big, too fail" làm méo mĩ những ưu đãi về rủi ro của các tổ chức tài chính. Các nhà hoạch định chính sách đề xuất một loạt các quy định để định hình lại các định chế tài chính để giải quyết vấn đề liên quan đến các tổ chức tài chính đã đạt đến trạng thái “too big, too fail”, như việc hạn chế quy mơ. Lý do là các cơ quan quản lý tin rằng tổ chức tài chính càng lớn, thì càng cĩ khả năng đạt đến trạng thái “quá lớn để sụp đổ” và dễ gây ra rủi ro hệ thống. Những người ủng hộ đề xuất này cho rằng điều này sẽ ngăn cản các doanh nghiệp tài chính trở nên quá lớn, khiến giảm thiểu nguy cơ cho nền kinh tế. Tuy nhiên, những người phản đối đề xuất này thì cho rằng sự kiềm chế này cĩ thể làm suy giảm khả năng cạnh tranh tồn cầu của ngành tài chính quốc gia và gây mất thị phần. Ngồi ra, họ cũng cảnh báo rằng việc hạn chế quy mơ cĩ thể cĩ những tác động khơng mong muốn, như thiếu đa dạng hĩa rủi ro tín dụng. Mặt khác, việc xác định chính xác ngưỡng “too big, too fail” cho từng đối tượng mỗi khu vực, quốc gia là khĩ khăn. Ngành ngân hàng tại Việt Nam đã trải qua một sự tăng trưởng nhanh chĩng trong 20 năm qua. Trong một thời gian, các ngân hàng thương mại gia tăng quá nĩng cả về quy mơ và mức độ hoạt động để tìm kiếm lợi nhuận mà khơng cĩ sự quan tâm đúng mức đến khả năng rủi ro cĩ thể gặp phải. Các ngân hàng thương mại Việt Nam luơn tự tin về sự bảo đảm của Chính phủ về những hỗ trợ trong quá trình hoạt động, đặc biệt là khi đối mặt với hậu quả do thua lỗ. Điều này làm nảy sinh các vấn đề nguy hại cho nền kinh tế. Vậy liệu cĩ mối tương quan giữa quy mơ và mức độ chấp nhận rủi ro tại các ngân hàng thương mại Việt Nam? Hiện nay, quy mơ của các ngân hàng thương mại Việt Nam cĩ sự chênh lệch khá lớn. Liệu rằng sự khác biệt trong quy mơ cĩ ảnh hưởng đến mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam? Đối với Việt Nam, liệu rằng quy mơ cĩ phải là vấn đề quan trọng đến việc giảm thiểu mức độ chấp nhận rủi ro trong hệ thống ngân hàng thương mại? Sử dụng dữ liệu thu thập được từ hệ thống ngân hàng thương mại Việt Nam, tác giả kiểm tra sự thay đổi của quy mơ cĩ tác động đến mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam hay khơng? Bên cạnh đĩ, việc tác giả sử dụng Z-score làm biến đo lường mức độ chấp nhận rủi ro với các nhân tố cấu thành là, địn bẩy tài chính (CAR), lợi nhuận trên tài sản (ROA) và sự biến động của thu nhập (σ(ROA)) cho phép tìm hiểu sâu hơn mối liên hệ với quy mơ nhằm xác định nguyên nhân chính dẫn đến mối quan hệ này để đưa ra được chính sách giúp cho việc hoạch định chính sách quản lý rủi ro hệ thống ngân hàng hiệu quả hơn. Xuất phát từ thực tiễn nêu trên, tác giả đã quyết định chọn đề tài “Nghiên cứu về quy mơ, địn bẩy tài chính và mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam” cho nghiên cứu của mình với mong muốn bổ sung kết quả minh chứng vững hơn cho tác động của quy mơ đến mức độ chấp nhận rủi ro của các ngân hàng thương mại tại Việt Nam. Mục tiêu nghiên cứu của đề tài nhằm cung cấp bằng chứng thực nghiệm về tác động của quy mơ hoạt động đối với mức độ chấp nhận rủi ro của các ngân hàng thương mại cổ phần trong hệ thống ngân hàng thương mại Việt Nam. Ngồi ra, đề tài cịn nhằm mục tiêu tìm hiểu thêm các yếu tố khác như quản trị ngân hàng, sở hữu của CEO, khủng hoảng kinh tế, cĩ tác động như thế nào đến mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam. Từ mục tiêu nghiên cứu này, đề tài đặt ra các câu hỏi: Mối quan hệ giữa quy mơ và mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam là như thế nào? Việc sở hữu cổ phần của CEO/ban quản trị cĩ ảnh hưởng gì đến việc giảm thiểu rủi ro của các Ngân hàng hay khơng? 498
  3. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 Tác động của quy mơ đến mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam diễn ra trong giai đoạn khủng hoảng kinh tế thế giới và sau giai đoạn khủng hoảng kinh tế thế giới cĩ điều gì khác biệt? Những yếu tố cấu thành trong thước đo về quy mơ cĩ tác động như thế nào đến mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam? Cĩ phải nguyên nhân chính là do địn bẩy tài chính hay khơng? 2. Tổng quan nghiên cứu và phƣơng pháp nghiên cứu 2.1. Tổng quan nghiên cứu Qua tìm hiểu, tác giả ghi nhận cĩ nhiều nghiên cứu liên quan đến tác động của quy mơ đến mức độ chấp nhận rủi ro của các ngân hàng trên thế giới. Cĩ thể kể đến các nghiên cứu của Baker, Dean và Travis McArthur (2009); Balach và cộng sự, Sudhakar, Bruce Kogut và Hitesh Harnal (2010); Ray Barrell, Philip Davis, Tatiana Fic và Dilruba Karim (2011). Trong đĩ cĩ nghiên cứu của Sanjai Bhagat và cộng sự (2015) là nghiên cứu chủ đạo cho đề tài của tác giả. Nghiên cứu “Size, Leverage and Risk-taking of Financial Institutions” của Sanjai Bhagat và cộng sự điều tra mối liên hệ giữa quy mơ và mức độ chấp nhận rủi ro trong tổ chức tài chính giai đoạn 2002-2012, được thực hiện trên mẫu dữ liệu cĩ 6.277 quan sát, bao gồm 599 ngân hàng thương mại, 60 ngân hàng đầu tư và 43 cơng ty bảo hiểm. Kết quả thu được từ mẫu nghiên cứu ghi nhận khi quy mơ hoạt động càng lớn thì mức độ chấp nhận rủi ro của các ngân hàng càng gia tăng, thậm chí khi kiểm sốt các đặc điểm khác cĩ thể quan sát được, chẳng hạn như tỷ lệ tài sản trên thị trường, quản trị doanh nghiệp và cơ cấu sở hữu. Điều này phù hợp với quan điểm cho rằng các chính sách về "too big, too fail" làm méo mĩ những ưu đãi về rủi ro của các ngân hàng. Bên cạnh đĩ, các ngân hàng tham gia vào quá nhiều rủi ro thơng qua địn bẩy tài chính. Những phát hiện này cho thấy thay vì giới hạn quy mơ doanh nghiệp, các nhà hoạch định chính sách cần tăng cường các quy định về yêu cầu về vốn để kiểm sốt rủi ro của các ngân hàng nhằm đạt hiệu quả cao hơn. Ngồi ra, nghiên cứu cịn ghi nhận tác động của yếu tố quản trị trong việc giảm thiểu mức độ chấp nhận rủi ro của ngân hàng. Về mặt chính sách quản lý rủi ro, những phát hiện này cho thấy rằng vấn đề chấp nhận rủi ro quá mức cĩ thể bị hạn chế bằng cách tập trung vào cơng tác quản trị. Bên cạnh các yếu tố cơ bản về lý thuyết của hiệu ứng quy mơ ngân hàng, nhiều học giả đã thực hiện các nghiên cứu thực nghiệm về chủ đề này, vì họ cho rằng đây là một vấn đề chính sách quan trọng đối với sự ổn định của hệ thống ngân hàng. Saunders và cộng sự (1990) đã kiểm tra một mẫu của 38 ngân hàng lớn niêm yết tại Mỹ. Nghiên cứu sử dụng dữ liệu thu thập từ Call Report, với độ lệch chuẩn theo ngày của cổ phiếu đại diện cho mức độ chấp nhận rủi ro, và tổng tài sản đại diện cho biến quy mơ. Nghiên cứu kết luận được mức độ chấp nhận rủi ro gia tăng đồng thời với độ lớn của quy mơ hoạt động trong nhĩm các ngân hàng ở Mỹ được khảo sát. Cuộc khủng hoảng tài chính gần đây đã tạo ra sự quan tâm lớn trong việc nghiên cứu về tác động của quy mơ hoạt động đến mức độ chấp nhận rủi ro của các tổ chức tài chính trên thế giới. Laeven và Levine (2009) sử dụng bộ dữ liệu của 270 ngân hàng trong giai đoạn từ năm 1996-2001 từ Bankscope Bankers Almanac. Z-score được chọn làm biến phụ thuộc đại diện cho mức độ chấp nhận rủi ro và logarit của tổng tài sản đại diện cho quy mơ hoạt động. Một nghiên cứu tương tự được thực hiện bởi Houston và cộng sự (2010) trên nhĩm các ngân hàng trong giai đoạn từ năm 2000-2007 với 2.400 quan sát ở 69 quốc gia. Điểm khác biệt ở nghiên cứu này là nhĩm tác giả xây dựng biến phụ thuộc đại diện cho mức độ chấp nhận rủi ro là Z-score, ROA, CAR và σ(ROA). Kết quả nghiên cứu đưa ra kết luận tương đồng là quy mơ hoạt động càng lớn thì mức độ chấp nhận rủi ro của các ngân hàng cũng gia tăng. Tuy nhiên, trái ngược với kết luận của các nghiên cứu kể trên, Stiroh (2006) cũng tiến hành nghiên cứu trên mẫu 400 ngân hàng lớn niêm yết tại Mỹ giai đoạn từ năm 1997 đến năm 2004 thơng qua dữ liệu từ Y-9C Report. Nghiên cứu phát hiện quy mơ ngân hàng càng lớn thì mức độ chấp nhận rủi ro lại càng thấp, hay nĩi cách khác, các ngân hàng cĩ quy mơ lớn cĩ mức độ chấp nhận rủi ro ít hơn. 499
  4. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 Bên cạnh quy mơ, quản trị doanh nghiệp cũng là một yếu tố tác động đến mức độ chấp nhận rủi ro của các tổ chức tài chính. Theo một nghiên cứu của Cheng và cộng sự (2010) thực hiện trên mẫu các tổ chức tài chính tại Mỹ, kết quả ghi nhận tác động cùng chiều của khoản tiền thưởng cho nhà điều hành với mức độ chấp nhận rủi ro, hay nĩi cách khác, ngân hàng cĩ khoản thưởng cao thì sẽ làm gia tăng mức độ chấp nhận rủi ro. Tuy nhiên, mối quan hệ này cĩ thể đi ngược hướng. Theo Rajan (2006) và Diamond và Rajan (2009), hoạt động của các giám đốc điều hành được đánh giá dựa trên thu nhập liên quan đến đồng nghiệp của họ. Với áp lực này, các nhà quản lý cĩ động cơ để gia tăng mức độ chấp nhận rủi ro đối với các khoản đầu tư mang lại lợi nhuận trong ngắn hạn, ngay cả khi các nhà quản lý nhận ra rằng loại chiến lược này khơng thực sự tạo ra giá trị, thì mong muốn tăng giá chứng khốn và danh tiếng cá nhân cĩ thể trở thành lựa chọn hấp dẫn nhất cho họ. Nếu các nghiên cứu này là đúng, tác giả cho rằng các tổ chức tài chính với quản trị tốt hơn đã đặt ra các ưu đãi và kiểm sốt để tránh rủi ro khơng mang lại lợi ích cho cổ đơng. Như vậy, chúng ta sẽ thấy một mối tương quan âm giữa quản trị doanh nghiệp và mức độ chấp nhận rủi ro hay nĩi cách khác, tổ chức tài chính cĩ quản trị càng tốt thì mức độ chấp nhận rủi ro càng thấp. Tác giả cho rằng Diamond và Rajan (2009) cĩ liên quan nhiều hơn đến nghiên cứu của tác giả vì nghiên cứu được thiết kế đặc biệt cho các định chế tài chính. Mối liên hệ giữa quyền sở hữu của giám đốc và mức độ chấp nhận rủi ro của các ngân hàng cũng được ghi nhận. Saunders và cộng sự (1990) cho rằng, quyền sở hữu của nhà quản lý ngân hàng cĩ mối tương quan dương với việc chấp nhận rủi ro, hay nĩi cách khác, quyền sở hữu của nhà quản lý càng lớn thì mức độ chấp nhận rủi ro càng cao và ngược lại. Kết luận này được giải thích bởi cơ chế liên kết lợi ích ở cấp độ doanh nghiệp bằng cách tăng nắm giữ cổ phần của các nhà quản lý để hướng lợi ích cá nhân của họ tới các cổ đơng và do đĩ giảm bớt chi phí cho các vấn đề đại diện. Bhagat và cộng sự (2015) cùng với Sullivan và Spong (2007) đã chỉ ra mối liên hệ tương quan âm giữa quyền sở hữu của giám đốc và mức độ chấp nhận rủi ro, ủng hộ quan điểm về hiệu ứng 'cố thủ' trong khi Simpson và Glory (1999) cùng với Gropp và Kưhler (2010) cho rằng các ngân hàng do các nhà quản lý sở hữu cĩ nhiều điều kiện hơn để gia tăng mức độ chấp nhận rủi ro cao hơn so với các ngân hàng được kiểm sốt bởi những người khơng phải là chủ sở hữu, phù hợp với dự đốn dưới tác động của hiệu ứng “khuyến khích”. Phần trên, tác giả đã tiến hành tổng hợp các nghiên cứu trên thế giới để cĩ gĩc nhìn tổng quan về vấn đề này. Tại Việt Nam, theo tìm hiểu của tác giả, nghiên cứu về mối quan hệ giữa quy mơ và mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam hầu như rất ít. Nghiên cứu của Man Duy Pham (2016) về mối quan hệ giữa quy mơ hoạt động, cấu trúc sở hữu và mức độ chấp nhận rủi ro tại các ngân hàng thương mại Việt Nam, tính đến tác động từ quyền sở hữu của chính phủ, thực hiện trên bộ dữ liệu bảng của 30 ngân hàng thương mại Việt Nam trong giai đoạn 2006-2015, kết quả dựa trên các thơng số kỹ thuật cho thấy quy mơ ngân hàng cĩ mối tương quan dương với mức độ chấp nhận rủi ro tại nhĩm ngân hàng được nghiên cứu. Về cơ cấu sở hữu, chưa cĩ phát hiện nào về tác động của quy mơ ngân hàng đối với mức độ chấp nhận rủi ro trong trường hợp cĩ sự thay đổi cổ phần của chính phủ, trong khi với trường hợp sở hữu nước ngồi thì được chứng minh quy mơ hoạt động cĩ tương quan âm với mức độ chấp nhận rủi ro. 2.2. Phương pháp nghiên cứu 2.2.1. Phương pháp lựa chọn mẫu và thu thập dữ liệu Nguồn dữ liệu chính được sử dụng cho bài nghiên cứu được thu thập chủ yếu từ Vietstock và Vietdata, là các website lớn chuyên cung cấp dữ liệu kinh tế ở Việt Nam. Tác giả thu thập dữ liệu hằng năm của các ngân hàng thương mại cổ phần Việt Nam trong giai đoạn từ năm 2009-2017. Bài nghiên cứu sử dụng dữ liệu bảng. Áp dụng vào đề tài, tác giả thu thập nhiều thơng tin liên quan như: ROA, CAR, trong giai đoạn 2009-2017 của các ngân hàng thương mại Việt Nam để phục vụ vấn đề nghiên cứu. Ưu điểm của dữ liệu bảng dữ liệu chứa nhiều thơng tin hữu ích hơn, tính biến thiên nhiều hơn, ít hiện tượng đa cộng tuyến giữa các biến hơn, nhiều bậc tự do hơn và hiệu quả cao hơn. Nhờ vậy, cho các kết quả ước lượng các tham số trong mơ hình tin cậy hơn. Dữ liệu bảng cho phép xác định và đo lường tác động mà những tác động này khơng thể được xác định và đo lường khi sử dụng dữ liệu chéo hoặc dữ liệu thời gian. 500
  5. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 Sau đĩ, tác giả thu thập thêm các thơng tin cịn thiếu thơng qua việc tự thu thập từ báo cáo tài chính, báo cáo thường niên của các ngân hàng thương mại cổ phần Việt Nam. Tác giả thu thập tồn bộ thơng tin tài chính của hầu hết các ngân hàng thương mại Việt Nam (trừ các ngân hàng nước ngồi do hạch tốn vào ngân hàng mẹ). Trong quá trình thu thập dữ liệu, mẫu nghiên cứu được sàn lọc và xử lý bằng cách xem xét đến dữ liệu của các ngân hàng thương mại Việt Nam qua các năm từ năm 2009-2017, nếu ngân hàng khơng cĩ đủ số liệu, cĩ số liệu bất thường hoặc cĩ ít dữ liệu hơn 5 năm quan sát liên tục thì ngân hàng đĩ sẽ bị loại bỏ để cĩ thể đưa ra kết quả chính xác hơn Tổng số ngân hàng cịn lại bao gồm 32 ngân hàng, tuy nhiên do 4 ngân hàng là: DongABank, Eximbank, PGbank, Oceanbank do khơng thu thập đủ dữ liệu và đang trong diện kiểm sốt đặc biệt, cho nên xác đinh mẫu nghiên cứu gồm 28 ngân hàng thương mại cổ phần với 248 quan sát theo năm. Đây là mẫu đủ đại diện cho tồn bộ các ngân hàng thương mại cổ phần tại Việt Nam. Đối với các dữ liệu để xây dựng chỉ số quản trị, tác giả sẽ dựa trên các thơng tin được cơng khai ra bên ngồi. Các nguồn thơng tin chính bao gồm: báo cáo thường niên, báo cáo tài chính, báo cáo quản trị, thơng báo họp Đại hội đồng cổ đơng thường niên, biên bản họp Đại hội đồng cổ đơng, các tài liệu cơng khai và pháp lý nộp cho cơ quan quản lý, điều lệ ngân hàng, thơng tin trên website, thơng tin từ các phương tiện truyền thơng và các nguồn thơng tin khác. Số lượng ngân hàng thương mại Việt Nam niêm yết trên thị trường chứng khốn là rất ít. Trong mẫu gồm 28 ngân hàng được nghiên cứu thì chỉ cĩ 6 ngân hàng là thực hiện niêm yết là thỏa mãn điều kiện. Nhĩm các ngân hàng đã niêm yết, bao gồm ACB của Ngân hàng Á Châu (ACB), CTG của Ngân hàng Cơng thương Việt Nam (Viettin bank), MBB của Ngân hàng Quân đội (MB bank), SHB của Ngân hàng Sài Gịn - Hà Nội (SHB bank), STB của Ngân hàng Sài Gịn Thương Tín (Sacombank) và VCB của Ngân hàng Ngoại thương Việt Nam (Vietcombank). 2.2.2. Mơ hình nghiên cứu Mục tiêu của đề tài nhằm nghiên cứu tác động của quy mơ hoạt động đến mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam. Cách đo lường chính của việc đánh giá rủi ro là Z-score với nguyên lý Z-score cao hơn cho thấy sự ổn định hơn. Tác giả vận dụng mơ hình nghiên cứu của Bhagat và cộng sự (2015) để đánh giá mối quan hệ này. Mơ hình cơ sở của tác giả là như sau: Zi = α0 + α1Sizei + α2Mbi + α3Diri + α4Owni + α5Agei + α6Stateowni + α7Crisii + €i (1) Trong đĩ: - zi: Mức độ chấp nhận rủi ro của ngân hàng, được đo bằng chỉ số Z-score. - sizei: Log của tổng tài sản trung bình của ngân hàng i, được đo bằng logarithm tự nhiên của ln(sizei). - mbi: Tỷ số giá trị thị trường trên giá trị sổ sách của ngân hàng i được tính theo giá trị thị trường của cổ phiếu cuối năm tài chính trên giá trị sổ sách của cổ phiếu trên cân đối kế tốn, Biến này chỉ được thu thập đối với các ngân hàng cĩ niêm yết trên sàn giao dịch chứng HOSE và HNX. - Diri: Biến quản trị, thể hiện giá trị cổ phiếu sở hữu của chủ tịch hội động quản trị ngân hàng, được tính như logarit tự nhiên của giá trị cổ phiếu sở hữu của chủ tịch hội đồng quản trị của ngân hàng i cuối năm tài chính. - owni: Tỷ lệ sở hữu của CEO ngân hàng đĩ, được đo lường bằng tỷ lệ cổ phiếu sở hữu cuối năm tài chính của CEO ngân hàng đĩ. - agei: Độ tuổi của ngân hàng được tính bởi chênh lệch giữa năm tài chính hiện hành và năm mà ngân hàng này thành lập. - Stateowni: Biến giả thể hiện sở hữu nhà nước, bao gồm BIDV, Viettin, Vietcombank nhận giá trị 1, các ngân hàng cịn lại nhận giá trị 0. - crisii: Biến giả giai đoạn khủng hoảng. Tác giả sử dụng biến giả khủng hoảng kinh tế cho giai đoạn 2009-2012 và giai đoạn 2013-2017 là sau khủng hoảng. 501
  6. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 - €i: Sai số và βs (S = 1 6) là vectơ của ước lượng hệ số. Lưu ý rằng chúng ta chỉ bao gồm địn bẩy và khả năng sinh lời như các điều khiển chi tiết khi các biện pháp đo lường rủi ro khác được sử dụng làm biến phụ thuộc bởi vì Z-score là một hàm xác định của hai biến số này. Bảng 1: Tĩm tắt biến nghiên cứu và kỳ vọng dấu các hệ số Biến Cơ sở lý thuyết Biến phụ thuộc Bằng tỷ lệ (ROA + CAR) / (ROA). Z-score thấp hơn tiềm ẩn rủi Z-score ro mất khả năng thanh tốn cao hơn mà ngân hàng phải đối mặt Lợi nhuận trên tài sản, được tính bằng cách lấy lợi nhuận rịng ROA của ngân hàng chia cho tổng tài sản trung bình. Giá trị ROA cao hơn cho thấy độ ổn định cao hơn Tỷ lệ vốn trên tài sản, bằng (Tổng tài sản - Tổng nợ phải trả)/ Tổng tài sản. Điều này cho thấy vốn ngân hàng đang nắm giữ CAR theo tỷ lệ phần trăm của tổng tài sản và nắm giữ vốn thấp hơn cho thấy mức độ rủi ro mất khả năng thanh tốn cao hơn Độ lệch của ROA, đo lường mức độ biến động của lợi nhuận 휎(ROA) của một ngân hàng. Biến động cao hơn tiềm ẩn rủi ro cao hơn Biến độc lập Kỳ vọng dấu Theo quan điểm “too big, too fail”, ngân hàng cĩ quy mơ càng - Size lớn thì mức độ chấp nhận rủi ro càng cao Giá trị thị trường trên giá trị sổ sách. Ngân hàng cĩ tỷ lệ M/B + Mb thấp sẽ cĩ mức độ chấp nhận rủi ro cao hơn so với các ngân hàng cĩ tỷ lệ M/B cao Giá trị cổ phiếu sở hữu của chủ tịch hội đồng quản trị/CEO. + Hàm ý Ban quản trị sở hữu khối lượng tài sản càng lớn tại ngân Dir hàng thì sẽ cĩ mức độ chấp nhận rủi ro thấp hơn để bảo vệ tài sản của mình Tỷ lệ sở hữu của chủ tịch hội đồng quản trị/CEO. Hàm ý nhà - Own quản lý ngân hàng cĩ mức độ chấp nhận rủi ro cao hơn khi tỷ lệ sở hữu gia tăng Số năm/tuổi thành lập ngân hàng. Các ngân hàng càng lâu năm + Age thì sẽ cĩ khả năng giảm thiểu rủi ro tốt hơn Biến giả sở hữu nhà nước. Các ngân hàng thuộc sở hữu nhà - Stateown nước thì cĩ mức độ chấp nhận rủi ro lớn hơn so với các ngân hàng cổ phần tư nhân Biến giả khủng hoảng. Trong giai đoạn khủng hoảng, các ngân hàng gia tăng mức độ chấp nhận rủi ro để tìm kiếm lợi nhuận và Crisi - tranh giành thị trường. Sau khủng hoảng, chính sách điều chỉnh của chính phủ hạn chế mức độ chấp nhận rủi ro của các ngân hàng để bình ổn nền kinh tế Nguồn: Tác giả tổng hợp 2.2.3. Quy trình nghiên cứu Mục tiêu chính của đề tài là tìm hiểu tác động của quy mơ hoạt động đến mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam. Đề tài thu thập dữ liệu từ hai chuyên trang cung cấp cĩ uy tín là 502
  7. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 Vietstock và Vietdata. Dữ liệu được tập hợp dưới dạng bảng. Dữ liệu bảng là sự mở rộng của dữ liệu chéo theo thời gian nên cung cấp được nhiều thơng tin, bậc tự do cao hơn và độ tin cậy lớn hơn. Cĩ nhiều phương pháp được sử dụng để phân tích dữ liệu bảng, cĩ thể kể đến: ước lượng thơ (Pooled OLS), ước lượng theo phương pháp Robust Check, mơ hình Hiệu ứng cố định – Fix Effect Model (FEM), mơ hình Hiệu ứng ngẫu nhiên – Random Effect Model (REM) Đề tài áp dụng phương pháp Robust Check và FEM để phân tích số liệu nhằm hạn chế khiếm khuyết của mơ hình hồi quy Pooled OLS như tự tương quan, đa cộng tuyến, phương sai thay đổi. Trong quá trình nghiên cứu, tác giả sử dụng thêm mơ hình 2SLS để khắc phục vấn đề lựa chọn biến đại diện cho nhân tố quy mơ cho phù hợp. Ngồi ra, tác giả cịn sử dụng Hausman Test để kiểm tra tính vững của kết quả nghiên cứu, và chạy mơ hình để kiểm tra tác động của từng biến độc lập đến biến phụ thuộc nhằm làm rõ hơn tác động. Dựa vào sự hỗ trợ của phần mềm Stata 13.0, đề tài nghiên cứu thực hiện quy trình xử lý và phân tích số liệu được thực hiện theo các bước, cụ thể: Bước 1: Hồi quy mơ hình cơ sở: Trong bước này tác giả tiến hành phân tích kết quả hồi quy theo mơ hình thiết lập bằng mơ hình Robust check, Fixed effect. Như đã trình bày ở trên, mơ hình nghiên cứu cơ sở của đề tài là: Zi = α0 + α1Sizei + α2Mbi + α3Diri + α4Owni + α5Agei + α6Stateowni + α7Crisii + €i (1) Từ các kết quả nghiên cứu đã đề cập, tác giả đưa ra các giả thiết cho mơ hình như sau: H0: Quy mơ hoạt động cĩ mối tương quan dương với mức độ chấp nhận rủi ro của các ngân hàng thương mại việt nam, tương đương với phương trình (1): α1 = 0 Bước 2: Giải quyết vấn đề nội sinh bằng mơ hình 2SLS Kiểm định Hausman test được sử dụng để kiểm định vấn đề nội sinh của mơ hình (1). Tác giả sử dụng mơ hình hồi quy Two-Stage Least Square (2SLS) để phân tích biến đại diện cho quy mơ lên mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam, với mơ hình cụ thể: Zi = α0 + α1Sizei + α2Diri + α3Owni + α4Agei + α5Crisii +€i (2) với mơ hình biến cơng cụ: Sizei = α0 + α1Dalawarei + α2Employeesi + α3PPEi + α4Diri + α5Agei + α6Crisii + €i (3) Sizei = α0 + α1Dalawarei + α2Employeesi + α3PPEi + α4Owni + α5Agei + α6Crisii + €i (4) Trong đĩ: Dalaware là biến giả ngân hàng cĩ niêm yết trên HOSE hay HNX hay khơng, cĩ giá trị 1 nếu cĩ và 0 nếu khơng cĩ. Employees là số lượng nhân viên ngân hàng, được đo lường bằng ln (employeesi). PPE là số lượng chi nhánh và phịng giao dịch, được đo bằng ln (PPE). Bước 3: Kiểm tra tác động của biến khủng hoảng bằng mơ hình Robust check và Fixed Effect Tác giả phân tích tác động của biến khủng hoảng bằng cách chia dữ liệu nghiên cứu làm 2 giai đoạn: 2009-2012 là giai đoạn khủng hoảng và 2013-2017 là giai đoạn sau khủng hoảng để xem xét sự khác nhau trong phản ứng của các ngân hàng về mức độ chấp nhận rủi ro trong từng giai đoạn, từ đĩ đưa ra lý giải phù hợp cho từng giai đoạn hoạt động. Bước 4: Phân tích chi tiết các nhân tố trong Z-score bằng mơ hình Robust check và Fixed Effect Một vấn đề mà tác giả muốn xem xét là mối tương quan của các nhân tố cấu thành Z-score với quy mơ hoạt động, nhằm hiểu rõ mức độ tác động của các nhân tố này lên quy mơ hoạt động để đưa ra những định hướng hữu ích. Vì vậy, tác giả sử dụng mơ hình hồi quy Robust check và Fixed Effect cho từng nhân tố cấu thành của Z-score như là một biến phụ thuộc. 503
  8. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 Mơ hình cụ thể bao gồm: CARi = α0 + α1Sizei + α2Diri + α3Owni + α4Agei + α5Crisii + €i (5) ROAi = α0 + α1Sizei + α2Diri + α3Owni + α4Agei + α5Crisii + €i (6) σ(ROA) = α0 + α1Sizei + α2Diri + α3Owni + α4Agei + α5Crisii + €i (7) 3. Kết quả nghiên cứu 3.1. Thống kê mơ tả các biến trong mơ hình Bảng 2 trình bày số liệu thống kê tĩm tắt tất cả các biến trong mơ hình được giới thiệu ở phần trên của bài viết. Kết quả thống kê của từng biến được mơ tả như sau: Z-score là biến đại diện mức độ chấp nhận rủi ro của ngân hàng thương mại, được tính bằng cách lấy tổng tỷ suất lợi nhuận trung bình trên tài sản (ROA) và tỷ số tài sản vốn (CAR) chia cho độ lệch chuẩn của lợi nhuận tài sản (σ (ROA)), cĩ giá trị trung bình là 8.937697 và độ lệch chuẩn là 1.358393. So với giá trị trung bình của Zi, độ lệch chuẩn này là khá cao. Đồng thời, giá trị của Zi cĩ phạm vi giá trị tương đối rộng, từ giá trị nhỏ nhất là 2.587127 đến giá trị lớn nhất là 14.34516 cho thấy sự khác biệt khá lớn trong mức độ chấp nhận rủi ro giữa các ngân hàng thương mại ở Việt Nam. CAR tỷ lệ an tồn vốn được tính bằng cách lấy tổng tài sản trừ đi tổng nợ rồi chia cho tổng tài sản, cĩ giá trị trung bình là 0.0979726, độ lệch chuẩn là 0.0469159, giá trị lớn nhất và nhỏ nhất là 0.0349757 và 0.3323916. Đây là giá trị khá thấp so với các ngân hàng thương mại trên thế giới, ví dụ như các ngân hàng ở Mỹ cĩ tỷ lệ trung bình là 13.81%. Điều này cho thấy các ngân hàng thương mại Việt Nam cĩ xu hướng sử dụng địn bẩy tài chính khá cao. Tỷ lệ lợi nhuận trên tổng tài sản (ROA) của các ngân hàng thương mại Việt Nam cĩ giá trị trung bình là 1.006062% và độ lệch chuẩn là 0.4755193%. Đây là tỷ lệ khá thấp so với tỷ lệ chung tại các ngân hàng trong khu vực và trên thế giới. Cụ thể, trong nghiên cứu của Bhagat và cộng sự (2015), giá trị ROA bình quân của các ngân hàng tại Mỹ đạt 1.07% hay các ngân hàng trong khu vực ASEAN cĩ phổ giá trị ROA từ 1-2%. Size là biến đại diện cho quy mơ của các ngân hàng thương mại tại Việt Nam, được tính bằng lagarithm của tổng tài sản trung bình từng năm trong giai đoạn 2009-2017. Đề tài nghiên cứu kỳ vọng biến số này sẽ tương quan âm với mức độ chấp nhận rủi ro của các ngân hàng thương mại. Size cĩ giá trị trung bình là 32.06743 và độ lệch chuẩn là 1.197055 với giá trị nhỏ nhất và giá trị lớn nhất lần lượt là 28.83398 và 34.723. Nhìn chung, ta dễ dàng thấy rằng quy mơ của các ngân hàng Việt Nam cịn khá nhỏ so với các ngân hàng trong khu vực và trên thế giới. Director Ownership (Dir) là biến quản trị, thể hiện giá trị cổ phiếu sở hữu của chủ tịch hội đồng quản trị ngân hàng, được tính như logarit tự nhiên của giá trị cổ phiếu sở hữu của chủ tịch hội đồng quản trị của ngân hàng i cuối năm tài chính. Giá trị cổ phiếu của nhà điều hành ngân hàng cĩ giá trị trung bình là 23.64101 và độ lệch chuẩn là 1.336546. Độ trải của biến này khá nhỏ từ 20.40263 đến 26.80554. CEO Ownership (Own) là tỷ lệ sở hữu của CEO ngân hàng, được đo lường bằng tỷ lệ cổ phiếu sở hữu cuối năm tài chính của CEO ngân hàng đĩ, cĩ giá trị trung bình là 0.0247222 với giá trị nhỏ nhất và giá trị lớn nhất lần lượt là 0.01 và 0.04. Con số này cho thấy rằng tỷ lệ sở hữu của CEO tại các ngân hàng thương mại Việt Nam cịn khả nhỏ. M/B là tỷ số giá trị thị trường trên giá trị sổ sách của doanh nghiệp i được tính theo giá trị thị trường của cổ phiếu cuối năm tài chính trên giá trị sổ sách của cổ phiếu trên cân đối kế tốn, biến này chỉ được thu thập đối với các ngân hàng cĩ niêm yết trên sàn giao dịch chứng khốn HOSE và HNX. Biến này cĩ giá trị trung bình là 0.8913333, độ lệch chuẩn là 0.4652828, giá trị lớn nhất là 0.2685757 và giá trị lớn nhất là 2.568505. Điều này cho thấy, giá trị thị trường của các ngân hàng thương mại Việt Nam được niêm yết khơng được đánh giá cao so với giá trị sổ sách. 504
  9. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 Firm Age là độ tuổi ngân hàng, được tính bằng chênh lệch giữa năm i và năm ngân hàng này thành lập. Trung bình biến số này đạt 20.28517 cho thấy các ngân hàng thương mại ở Việt Nam cĩ tuổi đời khá lâu. Độ lệch chuẩn khá cao 11.6365 cho thấy sự chênh lệch lớn trong độ tuổi của các ngân hàng, cĩ nhiều ngân hàng mới được thành lập. Giá trị nhỏ nhất là 4 (Do PVCombank thành lập năm 2013) và giá trị lớn nhất là 60 (Ngân hàng BIDV thành lập năm 1957). Employees là số lượng nhân viên ngân hàng, được đo lường bằng ln(employeesi). Cĩ giá trị trung bình là 8.340008 và độ lệch chuẩn là 1.045481. Cho thấy sự chênh lệch khá lớn và hợp lý với sự chênh lệch trong quy mơ giữa các ngân hàng. Tương tự employees, PPE là biến đại diện cho số lượng chi nhành và phịng giao dịch, được tính bằng ln(PPEi), cũng cho kết quả tương tự trong sự chênh lệch lớn giữa các ngân hàng. Với giá trị trung bình 5.011048 và độ lệch chuẩn 0.9789705, giá trị nhỏ nhất và giá trị lớn nhất lần lượt là 3.332205 và 7.757906. Bảng 2: Thống kê mơ tả các biến trong mơ hình Số lƣợng Biến Trung bình Độ lệch chuẩn Giá trị nhỏ nhất Giá trị lớn nhất quan sát Z-score 248 8. 937697 1. 358393 6. 667298 14. 34516 size 252 32.06H3 1 .197055 28.83398 34 .723 M/B 52 0.89L3333 0.4652828 0.2685757 2.568505 Director Ownership 252 23 .64101 1.336546 20.40263 26.80554 CEO Ownership 252 0.0247222 0.011L99L 0.01 0.04 Firm age 252 20.28571 11.6365 -4 60 employeesi 250 8.340008 1.045481 5.991465 11.12898 PPEi 250 5.0110 8 0.9789705 3.332205 7.757906 CARi 248 0.0979726 0.0469159 0.0349757 0.3323916 ROAi 252 1.006062 0.4755193 0 3.11 aROAi 252 0.1265152 0.0569755 0.0385855 0.3243269 Nguồn: Kết quả thống kê được tổng hợp từ phần mềm Stata trên bộ số liệu được tác giả thu thập từ Vietstock, Vietdata và thu thập thủ cơng từ các báo cáo tài chính của mẫu 28 ngân hàng thương mại Việt Nam, trong khoảng thời gian từ 2009-2017 Theo nghiên cứu gần đây của Bhagat và cộng sự (2015), giá trị Z-score trung bình của các ngân hàng tại Mỹ là 46.36, trong khi các ngân hàng thương mại Việt Nam cĩ Z-score thấp hơn rất nhiều (8.93) so với các ngân hàng thương mại trên thế giới, điều này thể hiện mức độ chấp nhận rủi ro cuả các ngân hàng thương mại Việt Nam so với các ngân hàng trên thế giới là rất cao. Bên cạnh đĩ, các chỉ số đều thể hiện mức quy mơ chỉ nhằm trong nhĩm trung bình so với thị trường chung. 3.2. Phân tích kết quả hồi quy Nội dung phần này trình bày kết quả hồi quy tại các ngân hàng thương mại Việt Nam (bao gồm 28 ngân hàng trong mẫu nghiên cứu) với Zi là biến phụ thuộc và các biến độc lập lần lượt là sizei, diri, owni, agei, Stateowni, crisii. Tác giả áp dụng mơ hình hồi quy Robust Check để giảm thiểu sự ảnh hưởng của hiện tượng tự tương quan và đa cộng tuyến. Bên cạnh đĩ, nhằm kiểm sốt sự khác biệt khơng quan sát được giữa các ngân hàng thương mại, tác giả sử dụng mơ hình hồi quy hiệu ứng cố định Fixed Effect để ước lượng. Trong quá trình nghiên cứu, tác giả tách riêng xử lý các ngân hàng niêm yết để tìm hiểu tác 505
  10. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 động của biến M/B đối với mơ hình nghiên cứu nhằm đưa ra kết luận riêng về mức độ chấp nhận rủi ro đối với nhĩm các ngân hàng cĩ niêm yết trên thị trường chứng khốn. Bảng 3: Kết quả hồi quy tại các ngân hàng thƣơng mại Việt Nam khơng bao gồm biến M/B Biến Robust Check Fixed Effect -0.2968068 -0. 3673008 Size (.5049574) (0.1871254) -0.1166265 -0.1586551 Dir (0. .5011432) (0.1685596) 3.826797 7.425008 Own (2.3 .94947) (7.796046) -0. 0054865 -0. 3212333 Age (0. 0055413) (0. 018135) 0.4922335 Stateown 0 (0 .2122753) 1.62163 0.1882031 * Crisi (0. 1211472) (0. 0678508) 20.4577 30.71296 Constant (5. 215052) (2.631748) Sample period 2009-2017 2009-2017 # of observation 248 248 R-squared 0.6036 0.9557 Bảng này trình bày kết quả mơ hình hồi quy theo phương trình (1) để tìm hiểu mối quan hệ giữa quy mơ và mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam. Mơ hình Robust Check được trình bày trong cột 2 và mơ hình Fixed Effect được trình bày trong cột 3. Sai số chuẩn được trình bày trong ngoặc bên dưới. Các ký hiệu *, , lần lượt tương ứng với các mức ý nghĩa 10%, 5% và 1%. Nguồn: Kết quả tổng hợp từ phần mềm Stata trên số liệu thu thập được từ Vietstock, Vietdata và báo cáo thường niên của các ngân hàng với cỡ mẫu là 28 ngân hàng trong giai đoạn 2009-2017 Cả hai mơ hình hồi quy đều cho hệ số âm giữa tổng tài sản (sizei) và mức độ chấp nhận rủi ro của các ngân hàng (Zi). Kết quả này phù hợp với lý thuyết đã trình bày ở phần trước và các nghiên cứu trước đây. Từ đĩ, chấp nhận giả thuyết H0 đã nêu ở phần trên là quy mơ hoạt động cĩ tương quan dương với mức độ chấp nhận rủi ro tại các ngân hàng thương mại Việt Nam. Biến đại diện cho quản trị ngân hàng là giá trị cổ phiếu sở hữu của chủ tịch HĐQT/CEO (Director Ownership) cĩ mối quan hệ tương quan âm với Z-score trong cả hai mơ hình. Điều này cho thấy ngân hàng cĩ nguời điều hành sở hữu cổ phiếu lớn sẽ cĩ mức độ chấp nhận rủi ro cao hơn. Phát hiện này trái ngược với cơ sở lý thuyết trình bày ở phần 3, ngân hàng cĩ sự quản trị tốt sẽ cĩ mức độ chấp nhận rủi ro thấp hơn. Biến tỷ lệ sở hữu của CEO cĩ tương quan dương với Zi trong cả hai mơ hình, cho thấy rằng mức độ rủi ro hoạt động gắn liền với tỷ lệ cổ phiếu sở hữu của CEO. Kết quả này cũng phù hợp với lý thuyết đã nêu ở trên. Số năm thành lập ngân hàng cĩ mối tương quan âm với Zi. Điều này cĩ nghĩa là các ngân hàng thành lập lâu cĩ mức độ chấp nhận rủi ro cao hơn các ngân hàng mới thành lập. Các biến Stateown đại diện cho tỷ lệ sở hữu của nhà nước và crisisi đại diện cho giai đoạn khủng hoảng khơng cĩ quan hệ ý nghĩa với Zi. 506
  11. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 Bảng 4: Kết quả hồi quy bao gồm biến M/B Biến Robust Check Fixed Effect -.6319782 -.3053881 size (0.5416019) (0.1352204) -.217266 -.0570986 M/B (0.1374842) (0.0540555) -.3701834 .1332683 dir (0.4805794) (0.1418316) 10.16195 -6.098916 own (22.11782) (6.591374) (-0.0171574) (-0.3708905) age (0.005631) (0.0136901) 1.395795 0 Stateown (0.2513986) .9767553 -.0240476 crisi (0.155139) (0.0471263) 38.03224 25.25851 constant (8.329886) (1.794527) Sample period 2009-2017 2009-2017 # of observation 52 52 R-squared 0.8864 0.9950 Ghi chú: *, , lần lượt tương ứng với các mức ý nghĩa 10%, 5% và 1%. Bảng này trình bày kết quả mơ hình hồi quy theo phương trình (1) chỉ bao gồm các ngân hàng niêm yết trên thị trường chứng khốn Việt Nam là HOSE và HNX để tìm hiểu mối quan hệ giữa quy mơ hoạt động và mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam. Mơ hình Robust Check được trình bày trong cột 2 và mơ hình Fixed Effect được trình bày trong cột 3. Sai số chuẩn được trình bày trong ngoặc bên dưới. Các ký hiệu *, , lần lượt tương ứng với các mức ý nghĩa 10%, 5% và 1%. Nguồn: Kết quả tổng hợp từ phần mềm Stata trên số liệu thu thập được từ Vietstock, Vietdata và báo cáo thường niên của các ngân hàng với cỡ mẫu là 28 ngân hàng trong giai đoạn 2009-2017 Kết quả nghiên cứu được thực hiện riêng đối với nhĩm các ngân hàng niêm yết trên thị trường chứng khốn, bao gồm 6 ngân hàng thỏa mãn yêu cầu số liệu: Ngân hàng Ngoại thương Việt nam Vietcombank (VCB), Ngân hàng Cơng thương Viettinbank (CTG), Ngân hàng Á Châu (ACB), Ngân hàng Sài Gịn Thương tín Sacombank (STB), Ngân hàng Sài Gịn - Hà Nội (SHB), ngân hàng Quân đội (MBB). Trong kết quả trên, cả hai mơ hình hồi quy đều cho kết quả tương quan âm giữa tổng tài sản (sizei) và mức độ chấp nhận rủi ro của các ngân hàng (Zi). Điều này nĩi lên rằng các ngân hàng cĩ quy mơ càng lớn thì mức độ chấp nhận rủi ro cũng cao hơn. Kết quả này phù hợp với lý thuyết đã trình bày ở phần trước và các nghiên cứu trước đây. Biến đại diện cho quản trị ngân hàng là giá trị cổ phiếu sở hữu của chủ tịch HĐQT/CEO (Director Ownership) và tương quan dương trong mơ hình Fixed Effects với mức ý nghĩa 5%. Điều này cho thấy vẫn cĩ sự liên quan giữa giá trị cổ phiếu sở hữu của nhà điều hành ngân hàng với mức độ chấp nhận rủi ro hoạt động, trong đĩ ngân hàng cĩ nhà điều hành sở hữu giá trị cổ phiếu lớn sẽ cĩ mức độ chấp nhận rủi ro thấp hơn. 507
  12. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 Biến tỷ lệ sở hữu cổ phiếu của CEO cĩ tương quan âm với Z-score trong mơ hình FEM. Điều này đúng với lý thuyết đã nêu vì những nhà điều hành cĩ tỷ lệ sở hữu cao sẽ thích rủi ro cao để cĩ lợi nhuận cao. Các biến Age số năm thành lập ngân hàng, Stateown đại diện cho tỷ lệ sở hữu của nhà nước và crisi đại diện cho giai đoạn khủng hoảng khơng cĩ quan hệ ý nghĩa với Z-score. Kết luận từ mơ hình Robust Check và FEM: Quy mơ ngân hàng cĩ mối tương quan âm với mức độ chấp nhận rủi ro, nghĩa là các ngân hàng cĩ quy mơ lớn sẽ cĩ rủi ro cao hơn các ngân hàng quy mơ nhỏ. Các ngân hàng cĩ tỷ lệ sở hữu của CEO càng cao thì mức độ chấp nhận rủi ro càng cao. 3.3. Phân tích tổng hợp biến quy mơ bằng mơ hình 2SLS Theo các nghiên cứu trước đây về “too big, too fail”, các ngân hàng tìm cách gia tăng quy mơ dưới nhiều phương thức để đạt được trạng thái “too big, too fail” nhằm tăng khả năng nhận được sự bảo hộ tài chính của chính phủ trong trường hợp thất bại trong hoạt động kinh doanh. Đây là vấn đề của chính sách “too big, too fail” rất phổ biến trên thế giới. Các ngân hàng thương mại Việt Nam cũng khơng ngoại lệ. Do quy mơ hoạt động của các ngân hàng khơng chỉ bao gồm tổng tài sản mà cịn nhiều nhân tố khác tham gia tác động. Để xác định rõ các nhân tố trong việc xác định quy mơ hoạt động của các ngân hàng thương mại Việt Nam, tác giả sử dụng ba biến cơng cụ sau đây: Ngân hàng cĩ được niêm yết khơng, logarit tự nhiên của số lượng nhân viên và logarit tự nhiên của số chi nhánh và phịng giao dịch của ngân hàng. Một điểm quan trọng phát sinh trong quá trình nghiên cứu thực nghiệm là vấn đề nội sinh. Tác giả sử dụng kiểm định Hausman test kiểm tra vấn đề nội sinh trong mơ hình. Nếu giá trị P-value thấp cho thấy cĩ vấn đề nội sinh trong mơ hình. Bài nghiên cứu sử dụng mơ hình 2SLS để giải quyết vấn đề nội sinh. Bảng 5: Kiểm định Hausmen test về vấn đề nội sinh của mơ hình P-value Kết luận Kiểm định nội suy Hausman test 0 Giá trị P-value thấp, cĩ vấn đề nội sinh trong mơ hình (1) Tác giả sử dụng biến dalaware đại diện ngân hàng cĩ niêm yết trên thị trường chứng khốn. Thơng thường, khi được niêm yết, các ngân hàng phải đạt được mức quy mơ cần thiết để huy động thêm vốn nhằm phát triển hoạt động kinh doanh. Đi kèm với niêm yết, ngân hàng phải thỏa mãn các yêu cầu về thơng tin minh bạch và chịu sự giám sát của chặt chẽ từ sở giao dịch chứng khốn, ngân hàng nhà nước và các cổ đơng đại chúng. Hai biến PPE đại diện cho số lượng chi nhánh và phịng giao dịch và employees đại diện cho số nhân viên ngân hàng cũng cĩ mối quan hệ với quy mơ hoạt động của ngân hàng. Trong đĩ, khi phát triển quy mơ càng lớn thì số lượng nhân viên, chi nhánh và phịng giao dịch sẽ gia tăng theo để đảm bảo nhu cầu khối lượng cơng việc về mở rộng thị phần. Để giải quyết vấn đề nội sinh và tìm hiểu rõ hơn tác động của biến sở hữu và biến quản trị, tác giả thực hiện hồi quy 2SLS với mơ hình: Zi = α0 + α1sizei + + α2diri + α3owni + α4agei + α5crisii + €i (2) với mơ hình biến cơng cụ: sizei = α0 + α1dalawarei + α2employeesi + α3PPEi + α4diri + α5agei + α6crisii + €i (3) sizei = α0 + α1dalawarei + α2employeesi + α3PPEi + α4owni + α5agei + α6crisii + €i (4) Bảng 6: Kết quả hồi quy theo mơ hình 2SLS khơng bao gồm biến director ownership 2SLS -0.3791986 * size (0.058246) -1.194337 own (4.896737) 508
  13. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 0.0021235 age (0.0057533) 1.677442 crisi (0.1150572) 20.34134 cons (1.819821) Sample period 2009-2017 # of observation 248 R-squared 0.5977 Bảng này trình bày kết quả mơ hình hồi quy 2SLS theo phương trình (a) để tìm hiểu mối quan hệ giữa quy mơ hoạt động và mức độ chấp nhận rủi ro tại các ngân hàng thương mại Việt Nam. Sai số chuẩn được trình bày trong ngoặc bên dưới. Các ký hiệu *, , lần lượt tương ứng với các mức ý nghĩa 10%, 5% và 1%. Bảng 7: Kết quả hồi quy theo mơ hình 2SLS khơng bao gồm biến CEO ownership 2SLS -.3426598 size (0.1258563) -0.035726 Dir (0.1080204) 0.0021202 age (0. 0057459) 1.678573 crisi (0. 11515) 20.34134 cons (1.819821) Sample period 2009-2017 # of observation 248 R-squared 0.5978 Bảng này trình bày kết quả mơ hình hồi quy 2SLS theo phương trình (b) để tìm hiểu mối quan hệ giữa quy mơ hoạt động và mức độ chấp nhận rủi ro tại các ngân hàng thương mại Việt Nam. Sai số chuẩn được trình bày trong ngoặc bên dưới. Các ký hiệu *, , lần lượt tương ứng với các mức ý nghĩa 10%, 5% và 1%. Theo kết quả hồi quy mơ hình 2SLS, biến tổng tài sản size (gồm các biến thành phần là tỷ lệ sở hữu của CEO, số năm thành lập, biến giả giai đoạn khủng hoảng, số nhân viên, số chi nhánh và phịng giao dịch, biến giả ngân hàng cĩ được niêm yết) tương quan âm với hệ số Zi. Cùng với các kết quả của những mơ hình được trình bày ở trên, các ngân hàng cĩ quy mơ càng lớn thì mức độ chấp nhận rủi ro cũng cao hơn. Kết quả này phù hợp với lý thuyết đã trình bày ở phần trước và các nghiên cứu trước đây. Tĩm tắt kết quả mơ hình 2SLS: Quy mơ của ngân hàng được tính từ các biến thành phần bao gồm các biến thành phần là tỷ lệ sở hữu của CEO, số năm thành lập, biến giả giai đoạn khủng hoảng, số nhân viên, số chi nhánh và phịng giao dịch, biến giả ngân hàng cĩ được niêm yết. Biến này tương quan âm với Zi, các ngân hàng cĩ quy mơ càng lớn thì mức độ chấp nhận rủi ro cũng cao hơn. 509
  14. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 3.4. Kiểm tra tác động của biến khủng hoảng Điểm đặc biệt của giai đoạn lấy mẫu số liệu là thời điểm diễn ra nền kinh tế đối mặt với những biến động trong và sau cuộc khủng hoảng tài chính thế giới. Giai đoạn 2009-2017, Việt Nam chứng kiến sự sụt giảm mạnh của thị trường chứng khốn và sự phục hồi sau đĩ của thị trường tài chính. Vì vậy, vấn đề cần xem xét là liệu cĩ nảy sinh sự thay đổi trong mối liên hệ giữa quy mơ hoạt động và mức độ chấp nhận rủi ro tại các ngân hàng thương mại Việt Nam ở từng thời điểm. Trong phạm vi bài nghiên cứu, tác giả chia thành hai giai đoạn: 2009-2012 là giai đoạn khủng hoảng (Năm 2009 đánh dấu sự ảnh hưởng mạnh mẽ của khủng hoảng tài chính tồn cầu đến kinh tế Việt Nam), 2013-2017 là giai đoạn sau khủng hoảng (Đánh dấu cho giai đoạn này là sự ra đời đề án 254 về tái cấu trúc hệ thống ngân hàng thương mại trong năm 2012) với sự kiểm sốt chặt chẽ từ cơ quan nhà nước. Tác giả sử dụng mơ hình hồi quy Robust và biến đại diện cho mức độ chấp nhận rủi ro là Z-score. Kết quả nghiên cứu được trình bày trong bảng 8. Bảng 8: Kiểm tra tác động của biến khủng hoảng Biến Giai đoạn khủng hoảng Giai đoạn sau khủng hoảng (2009-2012) (2013-2017) Assets(ln) 0.54902 -0.96497 (0.6701168) (0.7286371 ) Director Ownership -.9941061 0.5849462 ( .6842959) (0.7079888) CEO Ownership 46.39482 -29.90618 (34.15709) (33.22315 ) Firm age -.0035548 -0.0059596 ( 0.0081671) ( 0.007502) Constant 14.62116 26.13219 (6.521612) (7.862723) Sample period 2009-2012 2013-2017 # of observation 110 138 R-squared 0.2905 0.1530 Bảng này trình bày kết quả mơ hình hồi quy theo phương trình (1) nhằm tìm hiểu tác động của từng giai đoạn trong và sau khủng hoảng đến mối quan hệ giữa quy mơ hoạt động và mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam. Mơ hình Robust check được sử dụng cho nghiên cứu. Sai số chuẩn được trình bày trong ngoặc bên dưới. Các ký hiệu *, , lần lượt tương ứng với các mức ý nghĩa 10%, 5% và 1%. Nguồn: Kết quả tổng hợp từ phần mềm Stata trên số liệu thu thập được từ Vietstock, Vietdata và báo cáo thường niên của các ngân hàng với cỡ mẫu là 28 ngân hàng trong giai đoạn 2009-2017 Từ kết quả hồi quy, chúng ta thấy rằng tương quan dương giữa biến quy mơ ngân hàng và mức độ chấp nhận rủi ro xuất hiện ở giai đoạn sau khủng hoảng (2013-2017). Điều này được lý giải như sau, sau giai đoạn khủng hoảng, các ngân hàng đã mở rộng quy mơ và chấp nhận rủi ro cao hơn để tìm kiếm lợi nhuận. Bên cạnh đĩ, trong giai đoạn này sự mở rộng quy mơ thơng qua mở thêm chi nhánh, tuyển thêm nhân viên, tăng cường cho vay kéo theo rủi ro tăng cao do các ngân hàng thực hiện chính sách phát triển quy mơ nhằm mở rộng thị phần và tìm kiếm lợi nhuận trong giai đoạn nền kinh tế phục hồi. Sau khi nhận thấy nguy cơ do nợ xấu tăng cao, dư nợ cho vay bất động sản, đề án 254 ra đời để kiểm sốt các hoạt động này nhằm tăng tính minh bạch, lành mạnh trên thị trường. 510
  15. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 3.5. Phân tích các nhân tố trong Zscore Z-score cĩ ba thành phần cấu thành, bao gồm: ROA, CAR và σ(ROA). Do đĩ, Z-score sẽ thay đổi khi cĩ sự biến động của các nhân tố cấu thành. Một mức độ cao hơn của tỷ suất sinh lợi trên tổng tài sản ROA hay tỷ lệ an tồn vốn CAR sẽ làm giá trị Z-score tăng lên, trong khi độ lệch của của ROA sẽ cĩ tác động ngược lại, làm cho giá trị Z-score suy giảm. Vấn đề cần tìm hiểu là quy mơ hoạt động cĩ tác động như thế nào đến ba nhân tố cấu thành Z-score, về chiều hướng và cả mức độ tác động. Kết quả hồi quy của các phương trình (5), (6), (7) được trình bày ở bảng 9 bên dưới Bảng 9: Phân tích chi tiết các nhân tố trong Z-score CAR ROA σ(ROA) Bảng A: Kết quả hồi quy Robust Assets(ln) -0. 0057726 0.4593956 0. 0567959 (0.0174352) (0.2837573) Director Ownership -0. 027194 -0. 4776864 -0. 0576777 (0.0179277) (0.2843776) CEO Ownership 0.115609 18. 76525 2. 429559 (0.8331893) (13.00228) Firm age 0. 0008331 -0. 0021563 -0. 0 002943 (0.0001864) (0.0034837) Crisi 0.006949 0.1958297 * -0. 0011522 (0.0037216) (.0597297) Constant 0. 878516 -2. 939795 -0. 3848037 (0.1712186) (2.791321) Sample period 2009-2017 2009-2017 2009-2017 # of observation 252 252 252 R-squared 0. 5874 0. 0735 0. 0182 Bảng A: Kết quả hồi quy Fixed Effects CAR ROA σ(ROA) Assets(ln) -0. 0520691 -0. 0463225 * -8. 09e-32 (0.0177624) (0.0602326) (2.49e-19) Director Ownership -.0 0074451 .0 0256542 * 6. 59e-32 (0.016000) (0.0544161) (2.25e-19) CEO Ownership .0 1452278 -2. 11265 -3. Ole-30 (0.7400185) (2.513023) (1.04e-17) Firm age 0.0061018 -0. 0403912 2.36e-33 (0.0017214) (0.0057841) (2.39e-20) Crisi 0.0102493 0.0148936 -9. 94e-34 (0.0064406) (0.021953) (9.08e-20) Constant 0.812074 1.749988 0.1265152 (0.2498115) (0.8481353) (3.51e-18) 511
  16. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 Sample period 2009-2017 2009-2017 2009-2017 # of observation 252 252 252 R-squared 0.4435 0.6985 0.9844 Bảng này trình bày kết quả mơ hình hồi quy theo phương trình (5), (6), (7) nhằm tìm hiểu mối quan hệ giữa quy mơ hoạt động và các nhân tố cấu thành Z-score bao gồm CAR, ROA và σ(ROA). Mơ hình Robust check được trình bày trong bảng A và mơ hình Fixed Effects được trình bày trong bảng B. Sai số chuẩn được trình bày trong ngoặc bên dưới. Các ký hiệu *, , lần lượt tương ứng với các mức ý nghĩa 10%, 5% và 1%. Nguồn: Kết quả tổng hợp từ phần mềm Stata trên số liệu thu thập được từ Vietstock, Vietdata và báo cáo thường niên của các ngân hàng với cỡ mẫu là 28 ngân hàng trong giai đoạn 2009-2017 Từ kết quả hồi quy trên, chúng ta thấy rằng các yếu tố cấu thành Z-score đều chịu ảnh hưởng bởi biến quy mơ, đặc biệt là CARi. Sự gia tăng trong tổng tài sản sẽ làm giảm CAR, chúng ta thấy được điều này từ cơng thức tính CAR. Hệ số biểu hiện mức độ tác động của quy mơ lên CAR là 0.052 nghĩa là cứ mỗi phần trăm tăng lên trong quy mơ sẽ làm giảm 0.052% của CAR. Điều này hồn tồn đúng vì các ngân hàng cĩ quy mơ lớn thường là những ngân hàng sử dụng địn bẩy tài chính cao và các ngân hàng này dễ dàng cĩ được lợi nhuận từ những mảng kinh doanh chính của ngân hàng như là cho vay và huy động thơng qua những lợi thế cĩ được như ưu thế về thị trường, nguồn khách hàng Đối với các ngân hàng cĩ quy mơ nhỏ thì ngược lại. Do đĩ, quy mơ cĩ tương quan âm với CAR. Cùng với sự sụt giảm trong CAR thì sự gia tăng trong tài sản của ngân hàng cũng làm ROA giảm. Trung bình một phần trăm quy mơ ngân hàng tăng lên thì 0.046% ROA bị giảm đi. Chúng ta thấy rằng hiệu quả hoạt động của ngân hàng khơng tăng theo quy mơ. Các ngân hàng lớn dường như hoạt động kém hiệu quả hơn so với các ngân hàng nhỏ. Quy mơ cũng tác động lên độ lệch chuẩn của ROA. Tuy nhiên, sự tác động này là khơng đáng kể và khơng ảnh hưởng nhiều đến Z-score. Kết quả trên cho thấy nguyên nhân gây ra tương quan giữa Z-score và Size. Khi quy mơ hoạt động tăng thì CAR giảm, ROA giảm, độ lệch chuẩn ROA giảm. Ba yếu tố cấu thành Z-score đều giảm. Tuy nhiên do tác động đến từng yếu tố của biến quy mơ là khác nhau nên dẫn đến Z-score bị giảm. Từ những phân tích trên cho thấy Z-score thấp hơn đối với các ngân hàng lớn chủ yếu là do việc giảm của nhân tố tỷ lệ an tồn vốn CAR. Điều này phù hợp với nghiên cứu của Chen và cộng sự (2014), Bhagat và cộng sự (2015) trong việc phân tích rủi ro của các tổ chức tín dụng. Các ngân hàng lớn cĩ địn bẩy tài chính cao hơn so với các ngân hàng nhỏ, do đĩ để hạn chế mức độ chấp nhận rủi ro của các ngân hàng này cần gia tăng yêu cầu về vốn tối thiểu cho phù hợp với tiêu chuẩn thế giới như tiêu chuẩn BASEL II và hạn chế việc tăng trưởng quá nhanh tài sản của các ngân hàng như giới hạn tỷ lệ tăng trưởng tín dụng cho phép hàng năm của các ngân hàng 4. Kết luận Kể từ cuộc khủng hoảng tài chính tồn cầu năm 2008, các nhà hoạch định chính sách đã lo ngại về quan điểm “too big, too fail” được coi là nguyên nhân của hành vi chấp nhận rủi ro quá mức của các tổ chức tài chính và hậu quả là gây ra rủi ro hệ thống cho nền kinh tế. Về các biện pháp khắc phục, nhiều ý kiến đã được đề xuất như hạn chế quy mơ của các tổ chức tài chính lớn. Họ cho rằng việc thu hẹp quy mơ các ngân hàng thương mại sẽ giúp giảm thiểu vấn đề này; tuy nhiên, thực tế là khơng phải tất cả các hệ thống ngân hàng trên khắp các quốc gia đều bị ảnh hưởng bởi quy mơ ngân hàng và khĩ khăn trong việc chứng minh ngưỡng phù hợp cho quy mơ cĩ nghĩa là giải pháp này nhận được ít sự đồng thuận từ các học giả hoặc các nhà hoạch định chính sách. 512
  17. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 Trong đề tài này, tác giả đã phát hiện tác động của quy mơ họat động đến mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam. Sử dụng bộ dữ liệu của 28 ngân hàng thương mại Việt Nam, tác giả ghi nhận mối tương quan dương giữa quy mơ hoạt động ngân hàng và mức độ chấp nhận rủi ro ở mức ý nghĩa 5%, được đo bằng Z-score. Điều thực sự xảy ra đằng sau thực trạng này là các ngân hàng đã sử dụng quá nhiều địn bẩy tài chính. Phát hiện này cĩ ý nghĩa quan trọng đối với các nhà hoạch định chính sách: các quy định nhằm kiềm chế rủi ro của các ngân hàng thương mại nên tập trung hơn vào yêu cầu về vốn. Theo ơng Judah S. Kraushaar, giám đốc điều hành của Roaring Brook Capital, L.P., "kiểm sốt địn bẩy quá mức trong hệ thống ngân hàng cĩ thể sẽ giúp giảm bớt chu kỳ bùng nổ và bộc phát trong những thập kỷ gần đây". Do đĩ, từ nghiên cứu này, tác giả kiến nghị khơng nên hạn chế quy mơ của các ngân hàng thương mại Việt Nam vì thực tế quy mơ của các ngân hàng thương mại Việt Nam chỉ nằm ở mức trung bình so với các ngân hàng trong khu vực và trên thế giới. Thay vào đĩ, các nhà hoạch định chính sách nên tìm cách gia tăng mức độ tự chủ tài chính của các ngân hàng, đặc biệt là giảm địn bẩy tài chính và gia tăng hệ số an tồn vốn CAR. Điều này phù hợp với các khuyến nghị của các chuyên gia rủi ro tài chính và tiêu chuẩn BASEL mà thế giới đang áp dụng. Kết luận thứ hai của tác giả cho thấy quản trị doanh nghiệp, được đo bằng số lượng cổ phiếu sở hữu của chủ tịch HĐQT/CEO, cĩ ảnh hưởng đến mức độ chấp nhận rủi ro của các ngân hàng thương mại Việt Nam. Đây là một biện pháp khá đơn giản và trực quan so với các chỉ số quản trị chuẩn, vì vậy tương đối dễ dàng hơn khi thực hiện các chính sách quản lý rủi ro bằng cách yêu cầu số lượng cổ phiếu nhất định nắm giữ của ban quản lý ngân hàng nhằm gia tăng trách nhiệm trong quản lý rủi ro ngân hàng cũng như đảm bảo giá trị cho tài sản của chính họ. Cuối cùng, đề tài ghi nhận mối tương quan dương giữa quy mơ hoạt động với mức độ chấp nhận rủi ro tại các ngân hàng thương mại Việt Nam trong giai đoạn khủng hoảng kinh tế thế giới 2009-2013. TÀI LIỆU THAM KHẢO Danh mục tài liệu tiếng Việt [1] Thị Thanh Tú, 2014. “Xây dựng hệ thống quản trị rủi ro tại các ngân hàng thương mại Việt Nam”. Tạp chí Tài chính số 6 (2014). [2] Nguyễn Đăng Tùng, Bùi Thị Len, 2015. “Đánh giá nguy cơ phá sản của các ngân hàng niêm yết trên thị trường chứng khốn Việt Nam bằng chỉ số Altman Z-score”. Tạp chí Khoa học và Phát triển, tập 13, số 5, trang 833-840. Danh mục tài liệu tiếng Anh [1] Admati, Anat, and Martin Hellwig, 2013. The Bankers' New Clothes: What's Wrong with Banking and What to Do about It, Princeton University Press. [2] Agrawal, Anup, and Gershon N. Mandelker. 1987. Managerial incentives and corporate investment and financing decisions. Journal of Finance 42, 823-837. [3] Amihud, Yakov, and Baruch Lev. 1981. Risk reduction as a managerial motive for conglomerate mergers. Bell Journal of Economics 12, 605-617. [4] Anginer, Deniz, and Asli Demirguc-Kunt. 2014. Has the global banking system become more fragile over time? Journal of Financial Stability, 13, 202-213. [5] Baker, George P., and Brian J. Hall. 2004. CEO incentives and firm size. Journal of Labor Economics 22, 767-798. [6] Baker, Dean, and Travis McArthur. 2009. The value of the "too big to fail" big bank subsidy. Center for Economic and Policy Research Paper. [7] Basel Capital Accord. 1998. International convergence of capital measurement and capital standards. Bank for International Settlements. 513
  18. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 [8] Bebchuk, Lucian, and Alma Cohen. 2003. Firms' decisions where to incorporate. Journal of Law and Economics XLVI, 383-425. [9] Bebchuk, Lucian, Alma Cohen, and Allen Ferrell. 2009. What matters in corporate governance? Review of Financial Studies 22, 783-827. [10] Beltratti, Andrea, and Rene M. Stulz. 2010. The credit crisis around the globe: Why did some banks perform better? Fisher College of Business Working Paper no. 2010-03-005. [11] Berger, Allen and Christa Bouwman. 2013. How does capital affect bank performance during financial crisis? Journal of Financial Economics 109, 146-176. [12] Bernanke, Ben S. 1983. Nonmonetary effects of the financial crisis in the propagation of the great depression. American Economic Review 73, 257-276. [13] Bhagat, Sanjai, and Brian Bolton. 2008. Corporate governance and firm performance. Journal of Corporate Finance 14, 257-273. [14] 2013. Director ownership, governance and performance. Journal of Financial and Quantitative Analysis 48, 105-135. [15] 2014. Financial crisis and bank executive incentive compensation. Journal of Corporate Finance 25, 313-341. [16] Bhagat, Sanjai, Brian Bolton, and Roberta Romano. 2008. The promise and peril of corporate governance indices. Columbia Law Review 108, 1803-1082. [17] Bharath, Sreedhar and Tyler Shumway. 2008. Forecasting default with the Merton distance to default model. Review of Financial Studies 21, 1339-1369. [18] Black, Bernard S. 1990. Is corporate law trivial? A political and economic analysis. [19] Black, Fischer, and Myron Scholes. 1973. The pricing of options and corporate liability. Journal of Political Economy 81, 637-654. [20] Bolton, Patrick, Hamid Mehran, and Joel Shapiro. 2010. Executive compensation and risk taking. Federal Reserve Bank of New York working paper. [21] Bound, John, David A. Jaeger, and Regina M. Baker. 1995. Problems with instrumental variables estimation when the correlation between the instruments and the endogenous explanatory variable is weak. Journal of the American Statistical Association 90 (430), 443-450. [22] Boyd, John H., Gianni De Nicolo, and Abu M. Jalal. 2006. Bank risk-taking and competition revisited: New theory and new evidence. IMF Working Paper no. WP/06/297, International Monetary Fund. [23] Boyd, John H., Ravi Jagannathan, and Sungkyu Kwak. 2009. What caused the current financial mess and what can we do about it? Journal of Investment Management 7, 1-17. [24] Boyd, John H., and David E. Runkle. 1993. Size and performance of banking firms: Testing the predictions of theory. Journal of Monetary Economics 31, 47-67. [25] Brewer III, Elijah, and Julapa Jagtiani. 2009. How much did banks pay to become too-big-to- fail and to become systemically important? Federal Reserve Bank of Philadelphia Working Paper. [26] Calice, Giovanni, Christos Ioannidis, and Julian Williams, 2012, "Credit derivatives and the default risk of large complex financial institutions." Journal of Financial Services Research, 42 (1-2), 85-107. [27] Calomiris, Charles W., and Joseph R. Mason. 2003. Consequences of US bank distress during the depression. American Economic Review 93, 937-947. [28] 2003. Fundamentals, panic and bank distress during the depression. American Economic Review 93, 1615-1647. [29] 1997. Contagion and bank failure during the great depression: The Chicago banking panic of June 1932. American Economic Review 87, 863-684. 514
  19. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 [30] Carletti, Elena, and Philipp Hartmann. 2003. Competition and stability: What's special about banking? European Central Bank Working Paper no. 146. [31] Chen, Ren-Raw, N.K. Chidambaran, Michael B. Imerman, and Ben J. Sopranzetti, 2014, "Liquidity, Leverage, and Lehman: A Structural Analysis of Financial Institutions in Crisis." [32] Chesney, Marc, Jacob Stromberg, and Alexander F. Wagner. 2010. Risk-taking incentives, governance, and losses in the financial crisis. Swiss Finance Institute Research Paper no. 10-18. [33] De Nicolo, Gianni. 2000. Size, charter value and risk in banking: An international perspective. International Finance Discussion Paper no. 689, Board of Governors of the Federal Reserve System. [34] Demsetz, Rebecca S., Marc R. Saidenberg, and Philip E. Strahan. 1997. Agency problems and risk-taking at banks. Federal Reserve Bank of New York Working Paper. [35] Demsetz, Rebecca S., and Philip E. Strahan. 1997. Diversification, size, and risk at bank holding companies. Journal of Money, Credit, and Banking 29, 300-313. [36] Diamond, Douglas W., and Raghuram G. Rajan. 2009. The credit crisis: Conjectures about causes and remedies. American Economic Review: Papers & Proceedings 99:2, 606-610. [37] Fama, E., 2010, in interview at November 2010. Fama, Eugene F., and Kenneth R. French. 1992. The cross-section of expected stock returns. Journal of Finance 47, 427-465. [38] French, Kenneth R. 2010. The Squam Lake report: Fixing the financial system. Princeton University Press. [39] Galloway, Tina M., Winson B. Lee, and Dianne M. Roden. 1997. Banks' changing incentives and opportunities for risk-taking. Journal of Banking & Finance 21, 509-527. [40] Gompers, Paul, Joy Ishii, and Andrew Metrick. 2003. Corporate governance and equity prices. Quarterly Journal of Economics 118, 107-155. [41] Hahn, Jinyong and Jerry A. Hausman, 2002, A new specification test for the validity of instrumental variables, Econometrica 70, 163-189. [42] Hausman, Jerry A., 1978, Specification tests in econometrics, Econometrica 46, 1251-1271. [43] Hamilton, Lawrence C. 1991. How robust is robust regression? Stata Technical Bulletin 2, 21-26. [44] Houston, Joel F., Chen Lin, Ping Lin, and Yue Ma. 2010. Creditor rights, information sharing, and bank risk-taking. Journal of Financial Economics 96:3, 485-512. [45] Jensen, Michael, and William Meckling. 1976. Theory of the firm: Managerial behavior, agency costs, and ownership structure. Journal of Financial Economics 3, 305-360. [46] Jessen, Cathrine, and David Lando. 2014. Robustness of distance-to-default. Journal of Banking & Finance, in press. [47] John, Kose, Lubomir Litov, and Bernard Yeung. 2008. Corporate governance and risk-taking. Journal of Finance 4, 1679-1728. [48] Laeven, Luc, and Ross Levine. 2009. Bank governance, regulation and risk-taking. Journal of Financial Economics 93, 259-275. [49] Man Duy Pham (2016), “Size, ownership structure and risk-taking behavior: An Empirical Study of Vietnamese Commercial Banks”. [50] Merton, Robert C. 1974. On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29(2), 449-470. [51] Merton, Robert C. 1977. An analytic derivation of the cost of deposit Insurance and loan guarantees: An application of modern option pricing theory. Journal of Banking and Finance, v1(1), 3-11. 515
  20. INTERNATIONAL CONFERENCE FOR YOUNG RESEARCHERS IN ECONOMICS & BUSINESS 2019 ICYREB 2019 [52] Molyneux, Philip, Klaus Schneck, and Tim Mi Zhou, 2010, Too-big-to-fail and its impact on safety net subsidies and systemic risk, University of Bocconi working paper. [53] Rajan, Raghuram G. 2006. Has finance made the world riskier? European Financial [54] Rime, Bertrand. 2005. Do "too big to fail" expectations boost large banks issuer ratings? Swiss National Bank Research Paper. [55] Saunders, Anthony, Elizabeth Strock, and Nickolaos G. Travlos. 1990. Ownership structure, deregulation, and bank risk-taking. Journal of Finance 45, 643-654. [56] Stern, Gary H., and Ron Feldman. 2009. Addressing TBTF by shrinking financial institutions: An initial assessment. The Region. [57] Stiroh, Kevin J. 2006. New evidence on the determinants of bank risk. Journal of Financial Services Research 30, 237-263. [58] Stock, James H., and Motohiro Yogo. 2005. Testing for weak instruments in linear IV regression. Identification and inference for econometric models: Essays in honor of Thomas Rothenberg, Cambridge University Press, pp.80-108. [59] Vyas, Dushyantkumar. 2011. The timeliness of accounting write-downs by U.S. financial institutions during the financial crisis of 2007-2008. Journal of Accounting Research 49:3, 823-860. 516